Eur. J. Entomol. 121: 435-442, 2024 | DOI: 10.14411/eje.2024.047

Phylogenomics of palynophagous pine cone weevils (Coleoptera: Cimberididae) recovers the monophyly of Cimberidini and Doydirhynchini and reveals the paraphyly of CimberisOriginal article

Duane D. MCKENNA ORCID...1, 2, *, Brian D. FARRELL ORCID...3, Adriana E. MARVALDI ORCID...4, Rolf G. OBERPRIELER ORCID...5, Xuankun LI ORCID...1, 2, 6, *
1, 2 Department of Biological Sciences (1) and Center for Biodiversity Research (2), University of Memphis, Memphis, TN 38152, USA; e-mail: dmckenna@memphis.edu
3 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA; e-mail: bfarrell@fasmail.harvard.edu
4 CONICET, División Entomología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900 La Plata, Buenos Aires, Argentina; e-mail: marvaldi@fcnym.unlp.edu.ar
5 CSIRO, Australian National Insect Collection, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia; e-mail: ausweevil@gmail.com
6 Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China; e-mail: xli8@memphis.edu

The beetle family Cimberididae (pine cone weevils) consists of one extant subfamily, Cimberidinae, and two tribes, Cimberidini and Doydirhynchini, both limited in distribution to the Northern Hemisphere. Cimberidini comprise the genera Acromacer Kuschel, Cimberis Gozis and Pityomacer Kuschel and Doydirhynchini the genera Doydirhynchus Dejean and Lecontellus Kuschel. The larvae and adults of all known extant Cimberididae are palynophagous (pollen-feeding) in the male strobili of conifers of the genus Pinus (L.) (Pinaceae). We reconstructed the phylogeny of Cimberididae using data from 420 nuclear genes obtained via anchored hybrid enrichment. Our taxon sample included six species representing all described extant genera of Cimberididae except Pityomacer, which was unavailable for study. Most relationships in the resulting maximum-likelihood trees based on nucleotide and amino-acid sequence data were recovered with maximal bootstrap support. Both trees showed a monophyletic family Cimberididae, containing two clades corresponding to the tribes Cimberidini and Doydirhynchini. In Cimberidini, Cimberis was rendered paraphyletic by Acromacer bombifrons (LeConte). Notably, the internal and terminal branches of Cimberidini were very short compared to other parts of the tree. Generic relationships are discussed according to the phylogenetic results. To make the genus Cimberis monophyletic, we synonymize the names Cimberis Gozis, 1881 and Acromacer Kuschel, 1989 (syn. n.) and re-establish the combination Cimberis bombifrons (LeConte, 1876), proposed by Kuschel (1959). This study provides the first molecular phylogenetic hypothesis for the palynophagous weevil family Cimberididae.

Keywords: Classification, new synonymy, Acromacer, Doydirhynchus, Lecontellus, Pityomacer, palynophagy, Pinus

Received: April 26, 2024; Revised: October 16, 2024; Accepted: October 16, 2024; Published online: December 5, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
MCKENNA, D.D., FARRELL, B.D., MARVALDI, A.E., OBERPRIELER, R.G., & LI, X. (2024). Phylogenomics of palynophagous pine cone weevils (Coleoptera: Cimberididae) recovers the monophyly of Cimberidini and Doydirhynchini and reveals the paraphyly of Cimberis. EJE121, Article 435-442. https://doi.org/10.14411/eje.2024.047
Download citation

References

  1. Alonso-Zarazaga M.A., Barrios H., Borovec R., Bouchard P., Caldara R., Colonnelli E., Gülteki̇n L., Hlaváè P., Korotyaev B.A., Lyal C.H. et al. 2023: Cooperative Catalogue of Palaearctic Coleoptera Curculionoidea, 2nd ed. Sociedad Entomológica Aragonesa (S.E.A.), Zaragoza, 780 pp.
  2. Anderson R.S, Oberprieler R.G. & Marvaldi A.E. 2014: 3.1 Nemonychidae Bedel, 1882. In Leschen R.A.B. & Beutel R.G. (eds): Handbook of Zoology, Coleoptera, Beetles Vol. 3: Morphology and Systematics (Phytophaga). DeGruyter, Berlin, pp. 301-309. Go to original source...
  3. Breinholt J.W., Earl C., Lemmon A.R., Lemmon E.M., Xiao L. & Kawahara A.Y. 2018: Resolving relationships among the megadiverse butterflies and moths with a novel pipeline for anchored phylogenomics. - Syst. Biol. 67: 78-93. Go to original source...
  4. Brown J.W., Walker J.F. & Smith S.A. 2017: Phyx: Phylogenetic tools for Unix. - Bioinformatics 33: 1886-1888. Go to original source...
  5. Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K. & Madden T.L. 2009: BLAST+: architecture and applications. - BMC Bioinformatics 10: 421, 9 pp. Go to original source...
  6. Edgar R.C. 2010: Search and clustering orders of magnitude faster than BLAST. - Bioinformatics 26: 2460-2461. Go to original source...
  7. Evans J.D., McKenna D.D., Scully E.D., Cook S.C., Dainat B., Egekwu N., Grubbs N., Lopez D., Lorenzen M.D., Reyna S.M. et al. 2018: Genome of the small hive beetle (Aethina tumida, Coleoptera: Nitidulidae), a worldwide parasite of social bee colonies, provides insights into detoxification and herbivory. - Gigascience 7(12): giy138, 16 pp. Go to original source...
  8. Friedman A.-L.-L. 2009: Review of the biodiversity and zoogeographical patterns of the weevils (Coleoptera, Curculionoidea) in Israel. - ZooKeys 31: 133-148. Go to original source...
  9. Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W. & Gascuel O. 2010: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. - Syst. Biol. 59: 307-321. Go to original source...
  10. Haddad S., Shin S., Lemmon A.R., Lemmon E.M., Svacha P., Farrell B., ¦lipiñski A., Windsor D. & McKenna D.D. 2018: Anchored hybrid enrichment provides new insights into the phylogeny and evolution of longhorned beetles (Cerambycidae). - Syst. Entomol. 43: 68-89. Go to original source...
  11. Hamilton R.W. 1994: A Catalog of Coleoptera of America North of Mexico. Family: Nemonychidae. USDA Agriculture Handbook no. 529-134, Washington, DC, x + 8 pp.
  12. Haran J., Li X., Allio R., Shin S., Benoit L., Oberprieler R.G., Farrell B.D., O'Brien C.W., Brown S.D.J., Leschen R.A.B., Kergoat G.J. & McKenna D.D. 2023: Phylogenomics illuminates the phylogeny of flower weevils (Curculioninae) and reveals ten independent origins of brood-site pollination mutualism in true weevils. - Proc. R. Soc. (B) 290: 20230889, 11 pp. Go to original source...
  13. Hoang D.T., Chernomor O., von Haeseler A., Minh B.Q. & Vinh L.S. 2018: UFBoot2: improving the ultrafast bootstrap approximation. - Mol. Biol. Evol. 35: 518-522. Go to original source...
  14. Kalyaanamoorthy S., Minh B.Q., Wong T.K., von Haeseler A. & Jermiin L.S. 2017: ModelFinder: fast model selection for accurate phylogenetic estimates. - Nature Meth. 14: 587-589. Go to original source...
  15. Katoh K. & Standley D.M. 2013: MAFFT multiple sequence alignment software version 7: improvements in performance and usability. - Mol. Biol. Evol. 30: 772-780. Go to original source...
  16. Kück P. & Longo G.C. 2014: FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. - Front. Zool. 11: 81, 8 pp. Go to original source...
  17. Kuschel G. 1959: Nemonychidae, Belidae y Oxycorynidae de la fauna chilena, con algunas consideraciones biogeográficas. - Investig. Zool. Chilenas 5: 229-271.
  18. Kuschel G. 1989: The Nearctic Nemonychidae (Coleoptera: Curculionoidea). - Entomol. Scand. 20: 121-171. Go to original source...
  19. Kuschel G. 1993: The Palaearctic Nemonychidae (Coleoptera: Curculionoidea). - Ann. Soc. Ento­mol. Fr. 29: 23-46. Go to original source...
  20. Larsson A. 2014: AliView: A fast and lightweight alignment viewer and editor for large datasets. - Bioinformatics 30: 3276-3278. Go to original source...
  21. Legalov A.A. 2009: Annotated checklist of fossil and recent species of the family Nemonychidae (Coleoptera) from the world fauna. - Amurian Zool. J. 1: 200-213. Go to original source...
  22. Lemmon E.M. & Lemmon A.R. 2013: High-throughput genomic data in systematics and phylogenetics. - Annu. Rev. Ecol. Evol. Syst. 44: 99-121. Go to original source...
  23. Lemmon A.R., Emme S.A. & Lemmon E.M. 2012: Anchored hybrid enrichment for massively high-throughput phylogenomics. - Syst. Biol. 61: 727-744. Go to original source...
  24. Li X., St. Laurent R., Earl C., Doorenweerd C., van Nieukerken E.J., Davis D.R., Lopez-Vaamonde C., Ohshima I. & Kawahara A.Y. 2022: Phylogeny of gracillariid leaf-mining moths: evolution of larval behaviour inferred from phylo­genomic and Sanger data. - Cladistics 38: 277-300. Go to original source...
  25. Li X., Marvaldi A.E., Oberprieler R.G., Clarke D., Farrell B.D., Sequeira A., Ferrer M.S., O'Brien C., Salzman S., Shin S., Tang W.T. & McKenna D.D. 2024: The evolutionary history of the ancient weevil family Belidae (Coleoptera: Curculionoidea) reveals the marks of Gondwana breakup and major floristic turnovers, including the rise of angiosperms. - eLife 13: RP97552. DOI: https://doi.org/10.7554/eLife.97552.2 Go to original source...
  26. Marrone V., Piscopo M., Romano G., Ianora A., Palumbo A., & Costantini M. 2012: Defensome against toxic diatom aldehydes in the sea urchin Paracentrotus lividus. - PLoS ONE 7: e31750, 8 pp. Go to original source...
  27. May B.M. 1993: Larvae of Curculionoidea (Insecta: Coleo­ptera): A Systematic Overview. Fauna of New Zealand 28. Manaaki Whenua Press, Landcare Research New Zealand, Lincoln, Canterbury, 226 pp.
  28. McKenna D.D. 2011: Temporal lags and overlap in the diversification of weevils and flowering plants: Recent advances and prospects for additional resolution. - Am. Entomol. 57: 54-55. Go to original source...
  29. McKenna D.D. 2020: Symbiotic microbes mediate host range of herbivorous beetles. - Curr. Biol. 30: R893-R896. Go to original source...
  30. McKenna D.D., Sequeira A.S., Marvaldi A.E. & Farrell B.D. 2009: Temporal lags and overlap in the diversification of weevils and flowering plants. - Proc. Natn. Acad. Sci. USA 106: 7083-7088. Go to original source...
  31. McKenna D.D., Wild A.L., Kanda K., Bellamy C.L., Beutel R.G., Caterino M.S., Farnum C.W., Hawks D.C., Ivie M.A., Jameson M.L. et al. 2015: The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. - Syst. Entomol. 40: 835-880. Go to original source...
  32. McKenna D.D., Scully E.D., Pauchet Y., Hoover K., Kirsch R., Geib S.M., Mitchell R.F., Waterhouse R.M., Ahn S., Arsala D. et al. 2016: Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface. - Genome Biol. 17: 227, 18 pp. Go to original source...
  33. McKenna D.D., Clarke D.J., Anderson R., Astrin J., Brown S., Chamorro L., Davis S.R., del Rio M.G., Haran J., Kuschel G. et al. 2018: Morphological and molecular perspectives on the phylogeny, evolution and classification of weevils (Coleoptera: Curculionoidea): Proceedings from the 2016 international weevil meeting. - Diversity 10(3): 64, 33 pp. Go to original source...
  34. McKenna D.D., Shin S., Ahrens D., Balke M., Beza-Beza C.F., Clarke D.J., Donath A., Escalona H.E., Friedrich F., Letsch H. et al. 2019: The evolution and genomic basis of beetle diversity. - Proc. Natn. Acad. Sci. USA 116: 24729-24737. Go to original source...
  35. Minh B.Q., Hahn M.W. & Lanfear R. 2020: New methods to calculate concordance factors for phylogenomic datasets. - Mol. Biol. Evol. 37: 2727-2733. Go to original source...
  36. Nguyen L.T., Schmidt H.A., von Haeseler A. & Minh B.Q. 2015: IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. - Mol. Biol. Evol. 32: 268-274. Go to original source...
  37. Oberprieler R.G., Marvaldi A.E. & Anderson R.S. 2007: Weevils, weevils, weevils everywhere. - Zootaxa 520: 5326-5326. Go to original source...
  38. Regier J.C., Shultz J.W., Zwick A., Hussey A., Ball B., Wetzer R., Martin J.W. & Cunningham C.W. 2010: Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. - Nature Lett. 463: 1079-1084. Go to original source...
  39. Salem H. & Kaltenpoth M. 2022: Beetle-bacterial symbioses: endless forms most functional. - Annu. Rev. Entomol. 67: 201-219. Go to original source...
  40. Shin S., Clarke D.J., Lemmon A.R., Lemmon E.M., Aitken A.L., Haddad S., Farrell B.D., Marvaldi A.E., Oberprieler R.G. & McKenna D.D. 2018: Phylogenomic data yield new and robust insights into the phylogeny and evolution of weevils. - Mol. Biol. Evol. 35: 823-836. Go to original source...
  41. Thomas J.B. & Herdy H. 1961: A note on the life history of Cimberis elongatus (LeC.) (Coleoptera: Anthribidae). - Can. Entomol. 93: 406-408. Go to original source...
  42. Zwick A., Regier J.C. & Zwickl D.J. 2012: Resolving discrepancy between nucleotides and amino acids in deep-level arthropod phylogenomics: differentiating serine codons in 21-amino-acid models. - PLoS ONE 7: e47450, 12 pp. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.