Eur. J. Entomol. 121: 206-218, 2024 | DOI: 10.14411/eje.2024.023
Cytogenetic studies on three tenebrionid beetles, Tenebrio molitor, Alphitobius diaperinus and Zophobas morio (Coleoptera: Tenebrionidae): An overview and new dataOriginal article
- 1 Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, 23071 Jaén, Spain; e-mails: pmora@ujaen.es, jmrico@ujaen.es, tpalome@ujaen.es, avc00047@red.ujaen.es, plorite@ujaen.es
- 2 Departamento de Biologia Geral e Aplicada, Instituto de Biociências/IB, UNESP - Universidade Estadual Paulista, Rio Claro, 13506-900 São Paulo, Brazil; e-mail: cabral.mello@unesp.br
Here, a comprehensive cytogenetic analysis of three species of tenebrionid beetles: Alphitobius diaperinus, Tenebrio molitor and Zophobas morio, is presented. This paper also contains a review of the cytogenetic information for each species and adds new data. The male karyotype of both T. molitor and Z. morio is 2n = 18 + Xyp, with large heterochromatic blocks in the pericentromeric regions of all chromosomes. The male A. diaperinus karyotype is 2n = 18 + X0, also with heterochromatic pericentromeric regions in all chromosomes. The location of the nucleolar organizer regions (NORs) differs in each species: in A. diaperinus, it is located on the smallest pair of autosomes, while in T. molitor, it is on two pairs of autosomes and both sex chromosomes. In contrast, it is exclusively located on the X chromosome in Z. morio. Telomere analysis revealed that all species have TCAGG repeats in their telomeres, but lack the canonical TTAGG insect telomeric motif. In addition, a study of the distribution of satellite DNA and composition revealed that each species has a main satellite DNA family forming the pericentromeric heterochromatin. Fluorescence in situ hybridization of each of these satellites did not produce hybridization signal in the other two species, indicating a divergence in repetitive DNA composition among them. This study adds to the understanding of chromosomal organization, heterochromatin distribution and repetitive DNA dynamics in tenebrionid beetles and sheds light on their cytogenetic diversity and evolutionary significance.
Keywords: Karyotype, fluorescence in situ hybridization, C-banding, NOR, telomere, satellite DNA
Received: March 30, 2024; Revised: May 22, 2024; Accepted: May 22, 2024; Published online: June 21, 2024 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Bardella V.B., Milani D. & Cabral-de-Mello D.C. 2020: Analysis of Holhymenia histrio genome provides insight into the satDNA evolution in an insect with holocentric chromosomes. - Chrom. Res. 28: 369-380.
Go to original source...
- Blackmon H. & Demuth J.P. 2015: Coleoptera karyotype database. - Coleopt. Bull. 69: 174-175.
Go to original source...
- Blackmon H., Ross L. & Bachtrog D. 2017: Sex determination, sex chromosomes, and karyotype evolution in insects. - J. Hered. 108: 78-93.
Go to original source...
- Bouchard P., Bousquet Y., Aalbu R.L., Alonso-Zarazaga M.A., Merkl O. & Davies A.E. 2021: Review of genus-group names in the family Tenebrionidae (Insecta, Coleoptera). ZooKeys 1050: 1-633.
Go to original source...
- Bousquet Y., Thomas D.B., Bouchard P., Smith A.D., Aalbu R.L., Johnston M.A. & Steiner W.E. Jr 2018: Catalogue of Tenebrionidae (Coleoptera) of North America. - ZooKeys 728: 1-455.
Go to original source...
- Bracewell R., Tran A., Chatla K. & Bachtrog D. 2023: Sex chromosome evolution in beetles. - bioRxiv 2023: 01.18.524646. https://www.biorxiv.org/content/10.1101/2023.01.18.524646v1.
- Bruvo B., Plohl M. & Ugarkoviæ Ð. 1995: Uniform distribution of satellite DNA variants on the chromosomes of tenebrionid species Alphitobius diaperinus and Tenebrio molitor. - Hereditas 123: 69-75.
Go to original source...
- Cabral-de-Mello D.C., Moura R.C. & Martins C. 2011: Cytogenetic mapping of rRNAs and histone H3 genes in 14 species of Dichotomius (Coleoptera, Scarabaeidae, Scarabaeinae) beetles. - Cytogenet. Genome Res. 134: 127-135.
Go to original source...
- Cabral-de-Mello D.C. & Marec F. 2021: Universal fluorescence in situ hybridization (FISH) protocol for mapping repetitive DNAs in insects and other arthropods. - Mol. Genet. Genomics 296: 513-526.
Go to original source...
- Cabral-de-Mello D.C., Zrzavá M., Kubíèková S., Rendón P. & Marec F. 2021: The role of satellite DNAs in genome architecture and sex chromosome evolution in Crambidae moths. - Front. Genet. 12: 661417, 15 pp.
Go to original source...
- Cabral-de-Mello D.C., Mora P., Rico-Porras J.M., Ferretti A.B.S.M., Palomeque T. & Lorite P. 2023: The spread of satellite DNAs in euchromatin and insights into the multiple sex chromosome evolution in Hemiptera revealed by repeatome analysis of the bug Oxycarenus hyalinipennis. - Insect Mol. Biol. 32: 725-737.
Go to original source...
- Caperta A.D., Neves N., Viegas W., Pikaard C.S. & Preuss S. 2007: Relationships between transcription, silver staining, and chromatin organization of nucleolar organizers in Secale cereale. - Protoplasma 232: 55-59.
Go to original source...
- Czarniewska E., Sielicki K., Ma¶lana K. & Mijowska E. 2023: In vivo study on borophene nanoflakes interaction with Tenebrio molitor beetle: viability of hemocytes and short-term immunity effect. - Sci. Rep. 13: 11823, 11 pp.
Go to original source...
- Davis C.A. & Wyatt G.R. 1989: Distribution and sequence homogeneity of an abundant satellite DNA in the beetle, Tenebrio molitor. - Nucl. Acids Res. 17: 5579-5586.
Go to original source...
- Di Tommaso E. & Giunta S. 2024: Dynamic interplay between human alpha-satellite DNA structure and centromere functions. - Semin. Cell Dev. Biol. 156: 130-140.
Go to original source...
- Dobigny G., Ozouf-Costaz C., Bonillo C. & Volobouev V. 2002: "Ag-NORs" are not always true NORs: new evidence in mammals. - Cytogenet. Genome Res. 98: 75-77.
Go to original source...
- Dutrillaux A.M. & Dutrillaux B. 2012: Chromosome analysis of 82 species of Scarabaeoidea (Coleoptera), with special focus on NOR localization. - Cytogenet. Genome Res. 136: 208-219.
Go to original source...
- Dutrillaux B. & Dutrillaux A.M. 2023: Why are X autosome rearrangements so frequent in beetles? A study of 50 cases. - Genes 14: 150, 16 pp.
Go to original source...
- Eleftheriou E., Aury J.M., Vacherie B., Istace B., Belser C., Noel B., Moret Y., Rigaud T., Berro F., Gasparian S., La-badie-Bretheau K., Lefebvre T. & Madoui M.A. 2022: Chromosome-scale assembly of the yellow mealworm genome. - Open Res. Europe 1: 94, 30 pp.
Go to original source...
- Endow S.A. 1982: Polytenization of the ribosomal genes on the X and Y chromosomes of Drosophila melanogaster. - Genetics 100: 375-385.
Go to original source...
- Errico S., Spagnoletta A., Verardi A., Moliterni S., Dimatteo S. & Sangiorgio P. 2022: Tenebrio molitor as a source of interesting natural compounds, their recovery processes, biological effects, and safety aspects. - Compr. Rev. Food Sci. Food Saf. 21: 148-197.
Go to original source...
- European Commission 2023: Approval of Fourth Insect as a Novel Food. URL: https://food.ec.europa.eu/safety/novel-food/authorisations/approval-insect-novel-food_en (last accessed 12 Feb. 2024).
- FAO 2021: Looking at Edible Insects from a Food Safety Perspective. Challenges and Opportunities for the Sector. URL: https://doi.org/10.4060/cb4094en (last accessed 12 Feb. 2024).
Go to original source...
- Flynn J.M., Yukiko M. & Yamashita Y.M. 2024: The implications of satellite DNA instability on cellular function and evolution. - Semin. Cell Dev. Biol. 156: 152-159.
Go to original source...
- Frydrychová R., Grossmann P., Trubac P., Vítková M. & Marec F. 2004: Phylogenetic distribution of TTAGG telomeric repeats in insects. - Genome 47: 163-178.
Go to original source...
- Garrido-Ramos M.A. 2017: Satellite DNA: An evolving topic. - Genes 8: 230, 41 pp.
Go to original source...
- Goll L.G., Artoni R.F., Vicari M.R., Nogaroto V., Petitpierre E. & Almeida M.C. 2013: Cytogenetic analysis of Lagria villosa (Coleoptera, Tenebrionidae): Emphasis on the mechanism of association of the Xyp sex chromosomes. - Cytogenet. Genome Res. 139: 29-35.
Go to original source...
- Goll L.G., Matiello R.R., Artoni R.F., Vicari M.R., Nogaroto V., de Barros A.V. & Almeida M.C. 2015: High-resolution physical chromosome mapping of multigene families in Lagria villosa (Tenebrionidae): Occurrence of interspersed ribosomal genes in Coleoptera. - Cytogenet. Genome Res. 146: 64-70.
Go to original source...
- Gr¾an T., Dombi M., Despot-Slade E., Veseljak D., Volariæ M., Me¹troviæ N., Plohl M. & Mravinac B. 2023: The low-copy-number satellite DNAs of the model beetle Tribolium castaneum. - Genes 14: 999, 21 pp.
Go to original source...
- Guenin H.A. 1951: Chromosomes et hétérochromosomes de ténébrionidés. - Genetica 25: 175-182.
Go to original source...
- Hall T.A. 1999: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. - Nucl. Acids Symp. Ser. 41: 95-98.
- Ijdo J.W., Wells R.A., Baldini A. & Reeders S.T. 1991: Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. - Nucl. Acids Res. 19: 4780.
Go to original source...
- Juan C. & Petitpierre E. 1986: Karyological analyses on tenebrionid beetles from the Balearic Islands. - Genét. Ibér. 38: 231-243.
- Juan C. & Petitpierre E. 1989: C-banding and DNA content in seven species of Tenebrionidae (Coleoptera). - Genome 32: 834-839.
Go to original source...
- Juan C. & Petitpierre E. 1991: Chromosome numbers and sex-determining systems in Tenebrionidae (Coleoptera). - Adv. Coleopterol. 1: 167-176.
- Juan C., Gosalvez J. & Petitpierre E. 1990: Improving beetle karyotype analysis: restriction endonuclease banding of Tenebrio molitor chromosomes. - Heredity 65: 157-162.
Go to original source...
- Juan C., Pons J. & Petitpierre E. 1993: Localization of tandemly repeated DNA sequences in beetle chromosomes by fluorescent in situ hybridization. - Chrom. Res. 1: 167-174.
Go to original source...
- Kaur S., Stinson S.A. & diCenzo G.C. 2023: Whole genome assemblies of Zophobas morio and Tenebrio molitor. - G3 (Bethesda) 13: jkad079, 11 pp.
Go to original source...
- Kuznetsova V., Grozeva S. & Gokhman V. 2020: Telomere structure in insects: A review. - J. Zool. Syst. Evol. Res. 58: 127-158.
Go to original source...
- Lira-Neto A.C., Silva G.M., Moura R.C. & Souza M.J. 2012: Cytogenetics of the darkling beetles Zophobas aff. confusus and Nyctobates gigas (Coleoptera, Tenebrionidae). - Genet. Mol. Res. 11: 2432-2440.
Go to original source...
- Long E.O. & Dawid I.B. 1980: Repeated genes in eukaryotes. - Annu. Rev. Biochem. 49: 727-764.
Go to original source...
- Lopes A.T., Fernandes F.R. & Schneider M.C. 2017: Chromosome mapping of 28S ribosomal genes in 11 species of Cassidinae (Coleoptera: Chrysomelidae). - Eur. J. Entomol. 114: 546-553.
Go to original source...
- Lukhtanov V.A. & Pazhenkova E.A. 2023: Diversity and evolution of telomeric motifs and telomere DNA organization in insects. - Biol. J. Linn. Soc. Lond. 140: 536-555.
Go to original source...
- Matyja K., Rybak J., Hanus-Lorenz B., Wróbel M. & Rutkowski R. 2020: Effects of polystyrene diet on Tenebrio molitor larval growth, development and survival: Dynamic Energy Budget (DEB) model analysis. - Environ. Pollut. 264: 114-740.
Go to original source...
- Menezes R.S.T., Cabral-de-Mello D.C., Milani D., Bardella V.B. & Almeida E.A.B. 2021: The relevance of chromosome fissions for major ribosomal DNA dispersion in hymenopteran insects. - J. Evol. Biol. 34: 1466-1476.
Go to original source...
- Me¹troviæ N., Plohl M., Mravinac B. & Ugarkoviæ Ð. 1998: Evolution of satellite DNAs from the genus Palorus - Experimental evidence for the "library" hypothesis. - Mol. Biol. Evol. 15: 1062-1068.
Go to original source...
- Montiel E.E., Mora P., Rico-Porras J.M., Palomeque T. & Lorite P. 2022: Satellitome of the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae), the most diverse among insects. - Front. Ecol. Evol. 10: 826808, 18 pp.
Go to original source...
- Mora P., Pita S., Montiel E.E., Rico-Porras J.M., Palomeque T., Panzera F. & Lorite P. 2023: Making the genome huge: the case of Triatoma delpontei, a triatominae species with more than 50% of its genome full of satellite DNA. - Genes 14: 371, 20 pp.
Go to original source...
- Mravinac B. & Plohl M. 2010: Parallelism in evolution of highly repetitive DNAs in sibling species. - Mol. Biol. Evol. 27: 1857-1867.
Go to original source...
- Mravinac B., Me¹troviæ N., Cavrak V.V. & Plohl M. 2011: TCAGG, an alternative telomeric sequence in insects. - Chromosoma 120: 367-376.
Go to original source...
- Oliveira S.G., Moura R.C., Barros e Silva A.E. & Souza M.J. 2010: Cytogenetic analysis of two Coprophanaeus species (Scarabaeidae) revealing wide constitutive heterochromatin variability and the largest number of 45S rDNA sites among Coleoptera. - Micron 41: 960-965.
Go to original source...
- Oppert B., Dossey A.T., Chu F.-C., ©atoviæ-Vuk¹iæ E., Plohl M., Smith T.P.L., Koren S., Olmstead M.L., Leierer D., Ragan G. & Johnston J.S. 2023: The genome of the yellow mealworm, Tenebrio molitor: It's bigger than you think. - Genes 14: 2209, 20 pp.
Go to original source...
- Palacios-Gimenez O.M., Milani D., Song H., Martí D.A., López-León M.D., Ruiz-Ruano F.J., Camacho J.P.M. & Cabral-de-Mello D.C. 2020: Eight million years of satellite DNA evolution in grasshoppers of the genus Schistocerca illuminate the ins and outs of the library hypothesis. - Genome Biol. Evol. 12: 88-102.
Go to original source...
- Palomeque T. & Lorite P. 2008: Satellite DNA in insects: a review. - Heredity 100: 564-573.
Go to original source...
- Pavlek M., Gelfand Y., Plohl M. & Me¹troviæ N. 2015: Genome-wide analysis of tandem repeats in Tribolium castaneum genome reveals abundant and highly dynamic tandem repeat families with satellite DNA features in euchromatic chromosomal arms. - DNA Res. 22: 387-401.
Go to original source...
- Petitpierre E., Gatewood J.M. & Schmid C.W. 1988: Satellite DNA from the beetle Tenebrio molitor. - Experientia 44: 498-499.
Go to original source...
- Petitpierre E., Juan C., Pons J., Plohl M. & Ugarkoviæ Ð. 1995: Satellite DNA and constitutive heterochromatin in tenebrionid beetles. In Brandham P.E. & Bennett M.D. (eds): Kew Chromosome Conference IV. Royal Botanic Gardens, Kew, pp. 351-362.
- Pita S., Panzera F., Mora P., Vela J., Cuadrado Á., Sánchez A., Palomeque T. & Lorite P. 2017: Comparative repeatome analysis on Triatoma infestans Andean and non-Andean lineages, the main vector of Chagas disease. - PLoS ONE 12: e0181635, 13 pp.
Go to original source...
- Pita S., Lorite P., Cuadrado A., Panzera Y., De Oliveira J., Alevi K.C.C., Rosa J.A., Freitas S.P.C., Gómez-Palacio A., Solari A., Monroy C., Dorn P.L., Cabrera-Bravo M. & Panzera F. 2022: High chromosomal mobility of rDNA clusters in holocentric chromosomes of Triatominae, vectors of Chagas disease (Hemiptera: Reduviidae). - Med. Vet. Entomol. 36: 66-80.
Go to original source...
- Plohl M. & Ugarkoviæ Ð. 1994a: Analysis of the divergence of Alphitobius diaperinus satellite DNA - roles of recombination, replication slippage, and gene conversion. - Mol. Gen. Genet. 242: 297-304.
Go to original source...
- Plohl M. & Ugarkoviæ Ð. 1994b: Characterization of two abundant satellite DNAs from the mealworm Tenebrio obscurus. - J. Mol. Evol. 39: 489-495.
Go to original source...
- Plohl M., Borstnik B., Ugarkoviæ Ð. & Gamulin V. 1990: Sequence-induced curvature of Tenebrio molitor satellite DNA. - Biochimie 72: 665-670.
Go to original source...
- Pons J., Bruvo B., Petitpierre E., Plohl M., Ugarkoviæ Ð. & Juan C. 2004: Complex structural features of satellite DNA sequences in the genus Pimelia (Coleoptera: Tenebrionidae): random differential amplification from a common 'satellite DNA library'. - Heredity 92: 418-427.
Go to original source...
- Pru¹áková D., Peska V., Pekár S., Bubeník M., Èí¾ek L., Bezdìk A., Èapková & Frydrychová R. 2021: Telomeric DNA sequences in beetle taxa vary with species richness. - Sci. Rep. 11: 13319, 15 pp.
Go to original source...
- Rankic I., Zelinka R., Ridoskova A., Gagic M., Pelcova P. & Huska D. 2021: Nano/microparticles in conjunction with microalgae extract as novel insecticides against Mealworm beetles, Tenebrio molitor. - Sci. Rep. 11: 17125, 9 pp.
Go to original source...
- Rico-Porras J.M., Mora P., Palomeque T., Montiel E.E., Cabral-de-Mello D.C. & Lorite P. 2024: Heterochromatin is not the only place for satDNAs: the high diversity of satDNAs in the euchromatin of the beetle Chrysolina americana (Coleoptera, Chrysomelidae). - Genes 15: 395, 18 pp.
Go to original source...
- Rigopoulou M., Rumbos C. & Athanassiou C. 2023: Evaluation of the susceptibility of Alphitobius diaperinus meal to infestations by major stored-product beetle species. - Environ. Sci. Pollut. Res. Int. 30: 73628-73635.
Go to original source...
- Ruiz-Ruano F.J., López-León M.D., Cabrero J. & Camacho J.P.M. 2016: High-throughput analysis of the satellitome illuminates satellite DNA evolution. - Sci. Rep. 6: 28333, 14 pp.
Go to original source...
- Ruiz-Torres L., Mora P., Ruiz-Mena A., Vela J., Mancebo F.J., Montiel E.E., Palomeque T. & Lorite P. 2021: Cytogenetic analysis, heterochromatin characterization and location of the rDNA genes of Hycleus scutellatus (Coleoptera, Meloidae); A species with an unexpected high number of rDNA clusters. - Insects 12: 385, 12 pp.
Go to original source...
- Rumbos C.L. & Athanassiou C.G. 2021: The superworm, Zophobas morio (Coleoptera: Tenebrionidae): A 'sleeping giant' in nutrient sources. - J. Insect Sci. 21: 13, 11 pp.
Go to original source...
- Sharma G.P., Randa S.M. & Sharma S. 1973: Karyotype and sex-mechanism in four species of tenebrionid beetles. - Curr. Sci. 42: 216.
- Smith S.G. 1952: The evolution of heterochromatin in the genus Tribolium (Tenebrionidae: Coleoptera). - Chromosoma 4: 585-610.
Go to original source...
- Smith S.G. 1953: Chromosome numbers of Coleoptera. - Heredity 2: 31-48.
Go to original source...
- Smith S.G. & Virkki N. 1978: Animal Cytogenetics. Vol. 3, Insecta 5: Coleoptera. Gebrüder Borntraeger, Berlin, Stutgart, 366 pp.
- Sproul J.S., Khost D.E., Eickbush D.G., Negm S., Wei X., Wong I. & Larracuente A.M. 2020: Dynamic evolution of euchromatic satellites on the X chromosome in Drosophila melanogaster and the simulans clade. - Mol. Biol. Evol. 37: 2241-2256.
Go to original source...
- Stevens N.M. 1905: Studies in Spermatogenesis with Especial Reference to the 'Accessory Chromosome'. Carnegie Institution of Washington, Washington DC, 33 pp.
- Sumner A.T. 1972: A simple technique for demonstrating centromeric heterochromatin. - Exp. Cell Res. 75: 304-306.
Go to original source...
- Ugarkoviæ Ð., Plohl M. & Gamulin V. 1989: Sequence variability of satellite DNA from the mealworm Tenebrio molitor. - Gene 83: 181-183.
Go to original source...
- Ugarkoviæ Ð., Petitpierre E., Juan C. & Plohl M. 1995: Satellite DNAs in tenebrionid species-structure, organization and evolution. - Croat. Chem. Acta 68: 627-638.
- Vidal O.R. 1984: Chromosome numbers of Coleoptera from Argentina. - Genetica 65: 235-239.
Go to original source...
- Vitturi R., Catalano E., Sparacio I., Colomba M.S. & Morello A. 1996: Multiple-chromosome sex systems in the darkling beetles Blaps gigas and Blaps gibba (Coleoptera, Tenebrionidae). - Genetica 97: 225-233.
Go to original source...
- Wang W., Zhang X., Garcia S., Leitch A.R. & Kovaøík A. 2023: Intragenomic rDNA variation - the product of concerted evolution, mutation, or something in between? - Heredity 131: 179-188.
Go to original source...
- Weith A. 1985: The fine structure of euchromatin and centromeric heterochromatin in Tenebrio molitor chromosomes. - Chromosoma 91: 287-296.
Go to original source...
- Zakian V.A. 2012: Telomeres: the beginnings and ends of eukaryotic chromosomes. - Exp. Cell Res. 318: 1456-1460.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.