Eur. J. Entomol. 120: 316-323, 2023 | DOI: 10.14411/eje.2023.033
The effectiveness of Chrysoperla carnea (Neuroptera: Chrysopidae) and Beauveria bassiana (Ascomycota: Hypocreales) as control agents of Neophilaenus campestris (Hemiptera: Aphrophoridae) a vector of Xylella fastidiosa Original article
- Laboratorio de Entomología, IFAPA, Centro "Las Torres", Crta. Sevilla-Cazalla de la Sierra, Km 12,2, 41200 Alcalá del Río (Seville), Spain; e-mails: laura.avivar@juntadeandalucia.es, josem.molina@juntadeandalucia.es, sergio.perez@juntadeandalucia.es
The effectiveness of two biological control agents, Chrysoperla carnea (Neuroptera: Chrysopidae) and the entomopathogenic fungus Beauveria bassiana (Ascomycota: Hypocreales) against nymphs and adults of Neophilaenus campestris (Hemiptera: Aphrophoridae) was determined under laboratory conditions. First, different nymphal stages of N. campestris were presented to different larval stages of C. carnea. Second, the effect of the foam produced by N. campestris nymphs on the larvae of C. carnea predation was evaluated. Finally, four concentrations of a wild strain of B. bassiana, BbGEp1, were sprayed on plants in order to determine their lethality for adults of N. campestris. Second and 3rd-instar larvae of green lacewing larvae are capable of capturing and killing 3rd and 5th-instar nymphs of N. campestris. The percentage of 3rd-instar lacewing larvae that killed nymphs was significantly higher than that were killed by second-instar larvae. Second-instar larvae killed significantly more 3rd-instar nymphs than 5th-instar nymphs. Third instar lacewing larvae killed an average (± SEM) of 1.50 ± 0.31 5th-instar nymphs and 2nd-instar larvae killed very few nymphs. Spittlebug foam reduced, but did not prevent predation. The lethality of the entomopathogenic B. bassiana BbGEp1 used against adults of N. campestris was characterized by an LC50 value of 1.61 × 106 conidia/mL and LT50 of 3.63 days at 1 × 107 conidia/mL. The present study provides new and valuable data on the activity of two promising biological control agents of vectors of the bacterium Xylella fastidiosa. Further research is needed to confirm the results presented here and on the cost effectiveness of using these control agents as alternatives to synthetic insecticides for preventing the further spread of X. fastidiosa in Europe.
Keywords: Predation, natural enemies, biological control, entomopathogenic fungus, bacterium, median lethal concentration, transmission, spittlebug foam
Received: March 6, 2023; Revised: September 20, 2023; Accepted: September 20, 2023; Published online: November 7, 2023 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Alcalá-Herrera R., Ruano F., Galvez C., Frischie S. & Campos M. 2019: Attraction of green lacewings (Neuroptera: Chrysopidae) to native plants used as ground cover in woody Mediterranean agroecosystems. - Biol. Contr. 139: 104066, 8 pp.
Go to original source...
- Benhadi-Marín J., Villa M., Pereira L.F., Rodrigues I., Morente M., Baptista P. & Pereira J.A. 2020: A guild-based protocol to target potential natural enemies of Philaenus spumarius (Hemiptera: Aphrophoridae), a vector of Xylella fastidiosa (Xanthomonadaceae): A case study with spiders in the olive grove. - Insects 11(2): 100, 13 pp.
Go to original source...
- Biever K.D. & Hostetter D.L. 1971: Activity of the nuclear-polyhedrosis virus of the cabbage looper evaluated at programmed temperature regimens. - J. Invertebr. Pathol. 18: 81-84.
Go to original source...
- Bragard C., Dehnen-Schmutz K., Di Serio F., Gonthier P., Jacques M., Miret J.A.J., Justesen A.F., MacLeod A., Magnusson C.S. & Milonas P. 2019: Update of the Scientific Opinion on the risks to plant health posed by Xylella fastidiosa in the EU territory. - EFSA Journal 17: 56-65.
Go to original source...
- Cabanillas H. & Jones W.A. 2013: Pathogenicity of Isaria poprawskii (Ascomycota: Hypocreales: Cordycipitaceae) against the glassy-winged sharpshooter, Homalodisca vitripennis (Hemiptera: Cicadellidae), under laboratory conditions. - Crop Prot. 50: 46-52.
Go to original source...
- Campos M. 2001: Lacewings in Andalusian olive orchards. In McEwen P.K., New T.R. & Whittington A.E. (eds): Lacewings in the Crop Environment. Cambridge University Press, Cambridge, UK, pp. 492-497.
Go to original source...
- Canard M., Séméria Y. & New T.R. 1984: Biology of Chrysopidae. Dr. W. Junk, The Hague, 294 pp.
- Cavalieri V., Altamura G., Fumarola G., Di Carolo M., Saponari M., Cornara D., Bosco D. & Dongiovanni C. 2019: Transmission of Xylella fastidiosa subspecies pauca sequence type 53 by different insect species. - Insects 10(10): 324, 12 pp.
Go to original source...
- Chang S.C., Shih H.T. & Lu K.H. 2019: Antifungal effect and chitinase activities of the froth of spittlebug Poophilus costalis (Walker) (Hemiptera: Cercopoidea: Aphrophoridae). - J. Asia-Pac. Entomol. 22: 269-273.
Go to original source...
- Choudhary J.S., Prabhakar C.S., Maurya S., Kumar R., Das B. & Kumar S. 2012: New report of Hirsutella sp. infecting mango hopper Idioscopus clypealis from Chotanagpur Plateau, India. - Phytoparasitica 40: 243-245.
Go to original source...
- Clifton E.H., Castrillo L.A., Gryganskyi A. & Hajek A.E. 2019: A pair of native fungal pathogens drives decline of a new invasive herbivore. - Proc. Natn. Acad. Sci. 116: 9178-9180.
Go to original source...
- Cuello E.M., Andorno A.V., Hernández C.M. & López S.N. 2019: Prey consumption and development of the indigenous lacewing Chrysoperla externa feeding on two exotic Eucalyptus pests. - Biocontr. Sci. Technol. 29: 1159-1171.
Go to original source...
- Daane K.M., Yokota G.Y., Zheng Y. & Hagen K.S. 1996: Inundative release of common green lacewings (Neuroptera: Chrysopidae) to suppress Erythroneura variabilis and E. elegantula (Homoptera: Cicadellidae) in vineyards. - Environ. Entomol. 25: 1224-1234.
Go to original source...
- Dáder B., Viñuela E., Moreno A., Plaza M., Garzo E., del Estal P. & Fereres A. 2019: Sulfoxaflor and natural pyrethrin with piperonyl butoxide are effective alternatives to neonicotinoids against juveniles of Philaenus spumarius, the European vector of Xylella fastidiosa. - Insects 10(8): 225, 13 pp.
Go to original source...
- Dara S.K., McGuire M.R. & Kaya H.K. 2007: Isolation and evaluation of Beauveria bassiana for the suppression of glassy-winged sharpshooter, Homalodisca coagulata. - J. Entomol. Sci. 42: 56-65.
Go to original source...
- Dara S., McGuire M.R., Ulloa M. & Kaya H.K. 2008: Evaluation and molecular characterization of Beauveria bassiana for the control of the glassy-winged sharpshooter (Homoptera: Cicadellidae) in California. - J. Entomol. Sci. 43: 241-246.
Go to original source...
- Dauda Z., Maina U., Galadima I. & Gambo F. 2018: A review on the use of entomopathogenic fungi in the management of insect pests of field crops. - J. Entomol. Zool. Stud. 6: 27-32.
- Davila L., Villalba M., Marzal C. & Marí F. 2003: Identification and abundance of Neuropteran species associated with citrus orchards in Valencia, Spain. - IOBC/WPRS Bull. 26: 185-190.
- Del Campo M.L., King J.T. & Gronquist M.R. 2011: Defensive and chemical characterization of the froth produced by the cercopid Aphrophora cribrata. - Chemoecology 21: 1-8.
Go to original source...
- De León J.H., Fournier V., Hagler R. & Daane K.M. 2006: Development of molecular diagnostic markers for sharpshooters Homalodisca coagulata and Homalodisca liturata for use in predator gut content examinations. - Entomol. Exp. Appl. 119: 109-119.
Go to original source...
- Dongiovanni C., Altamura G., Di Carolo M., Fumarola G., Saponari M. & Cavalieri V. 2018: Evaluation of efficacy of different insecticides against Philaenus spumarius L., vector of Xylella fastidiosa in olive orchards in Southern Italy, 2015-17. - AMTs 43(1): tsy034, 4 pp.
Go to original source...
- Dongiovanni C., Bosco D., Porcelli F., Cavalieri V., Di Carolo M., Fumarola G., Tauro D., Altamura G. & Saponari M. 2020: Practical Solution for Management and Containment of Xylella fastidiosa. POnTE Project Deliverable 9.1. URL: https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5cdd715c6≈pId=PPGMS (last accessed 9 Sep. 2022).
- Elbeaino T., Yaseen T., Valentini F., Ben Moussa I.E., Mazzoni V. & D'Onghia A.M. 2014: Identification of three potential insect vectors of Xylella fastidiosa in southern Italy. - Phytopathol. Mediterr. 53: 328-332.
- Finney D.J. 1971: Probit Analysis, 3rd ed. Cambridge University Press, Cambridge, 333 pp.
- Foieri A., Pedrini N. & Toledo A. 2017: Natural occurrence of the entomopathogenic genus Pandora on spittlebug pests of crops and pastures in Argentina. - J. Appl. Entomol. 142: 363-370.
Go to original source...
- Fournier V., Hagler J., Daane K., De León J. & Groves R. 2008: Identifying the predator complex of Homalodisca vitripennis (Hemiptera: Cicadellidae): a comparative study of the efficacy of an ELISA and PCR gut content assay. - Oecologia 157: 629-640.
Go to original source...
- Frazier N.W. & Freitag J.H. 1946: Ten additional leafhopper vectors of the virus causing Pierce's disease of grapes. - Phytopathology 36: 634-637.
- Gibin D., Pasinato L. & Delbianco A. 2023: Update of the Xylella spp. host plant database - systematic literature search up to 31 December 2022. - EFSA J. 21(6): e08061, 73 pp.
Go to original source...
- Hartig F. 2022: DHARMa: Residual Diagnostics for Hierarchical (Multi-Level /Mixed) Regression Models. R Package Version 0.4.6. URL: https://CRAN.R-project.org/package=DHARMa
- Izquierdo J. & Sabaté J. 2018: Eficacia de deltametrín y flupiradifurona en el control de Philaenus spumarius. - Phytoma 304: 68-73.
- Kanga L.B., Jones W.A., Humber R.A. & Boyd Jr D.W. 2004: Fungal pathogens of the glassy-winged sharpshooter Homalodisca coagulata (Homoptera: Cicadellidae). - Fla Entomol. 87: 225-228.
Go to original source...
- Khan A., Sayyed A., Akram W., Raza S. & Ali M. 2012: Predatory potential of Chrysoperla carnea and Cryptolaemus montrouzieri larvae on different stages of the mealybug, Phenacoccus solenopsis: A threat to cotton in South Asia. - J. Insect Sci. 12(147), 12 pp.
Go to original source...
- Kron C.R. & Sisterson M.S. 2020: Spissistilus festinus (Hemiptera: Membracidae) susceptibility to six generalist predators. - PLoS ONE 15(11): e0242775, 10 pp.
Go to original source...
- Lahbib N., Picciotti U., Sefa V., Boukhris-Bouhachem S., Porcelli F. & Garganese F. 2022: Zelus renardii roaming in Southern Italy. - Insects 13(2): 158, 30 pp.
Go to original source...
- Lenth R., Bolker B., Buerkner P., Giné-Vázquez I., Herve M., Jung M., Love J., Miguez F., Riebl H. & Singmann H. 2023: Emmeans: Estimated Marginal Means, aka Least-squares Means (Version 1.8.9). URL: https://cran.r-project.org/web/packages/emmeans/emmeans.pdf
- Liccardo A., Fierro A., Garganese F., Picciotti U. & Porcelli F. 2020: A biological control model to manage the vector and the infection of Xylella fastidiosa on olive trees. - PLoS ONE 15(4): e0232363, 25 pp.
Go to original source...
- Martelli G.P., Boscia D., Porcelli F. & Saponari M. 2016: The olive quick decline syndrome in south-east Italy: a threatening phytosanitary emergence. - Eur. J. Plant Pathol. 144: 235-243.
Go to original source...
- Mazza G., Binazzi F., Marraccini D., Boncompagni L., Sabbatini Peverieri G., Roversi P. & Gargani E. 2021: Evaluation of Chrysoperla carnea complex and coccinellid predators as biocontrol agents of Ricania speculum (Walker, 1851) (Hemiptera: Ricaniidae). - Redia 104: 147-154.
Go to original source...
- Mesmin X., Chartois M., Genson G., Rossi J., Cruaud A. & Rasplus J. 2020: Ooctonus vulgatus (Hymenoptera, Mymaridae), a potential biocontrol agent to reduce populations of Philaenus spumarius (Hemiptera, Aphrophoridae) the main vector of Xylella fastidiosa in Europe. - Peer J. 8: e8591, 18 pp.
Go to original source...
- Milonas P., Kontodimas D. & Martinou A. 2011: A predator's functional response: Influence of prey species and size. - Biol. Contr. 59: 141-146.
Go to original source...
- Molinatto G., Demichelis S., Bodino N., Giorgini M., Mori N. & Bosco D. 2020: Biology and prevalence in Northern Italy of Verrallia aucta (Diptera, Pipunculidae), a parasitoid of Philaenus spumarius (Hemiptera, Aphrophoridae), the main vector of Xylella fastidiosa in Europe. - Insects 11(9): 607, 16 pp.
Go to original source...
- Morelli M., García-Madero J.M., Jos A., Saldarelli P., Dongiovanni C., Kovacova M., Saponari M., Baños Arjona A., Hackl E., Webb E. & Compant S. 2021: Xylella fastidiosa in olive: A review of control attempts and current management. - Microorganisms 9(8): 1771, 21 pp.
Go to original source...
- Morente M., Cornara D., Plaza M., Durán J.M., Capiscol R., Ruiz M., Ruz C., Sanjuan S., Pereira J.A., Moreno A. & Fereres A. 2018: Distribution and relative abundance of insect vectors of Xylella fastidiosa in olive groves of the Iberian Peninsula. - Insect 9(4): 175, 18 pp.
Go to original source...
- Pacheco-Rueda I., Lomeli-Flors J.R., López-Arroyo J.I., González-Hernández H., Romero-Napoles J., Santillán-Galicia M.T. & Suárez-Espinosa J. 2015: Preferencia de tamaño de presa en seis especies de Chrysopidae (Neuroptera) sobre Diaphorina citri (Hemiptera: Liviidae). - Rev. Colomb. Entomol. 41: 187-193.
- Pérez-Guerrero S., Gelan-Begna A. & Vargas-Osuna E. 2014: Impact of Cheiracanthium pelasgicum (Araneae: Miturgidae) and Chrysoperla carnea (Neuroptera: Chrysopidae) intraguild predation on the potential control of cotton pest Helicoverpa armigera (Lepidoptera: Noctuidae). - Biocontr. Sci. Technol. 24: 216-228.
Go to original source...
- Prazaru S.C., Zanettin G., Pozzebon A., Tirello P., Toffoletto F., Scaccini D. & Duso C. 2021: Evaluating the impact of two generalist predators on the leafhopper Erasmoneura vulnerata population density. - Insects 12(4): 321, 13 pp.
Go to original source...
- R Core Team 2022: R: A Language and Environment for Statistical Computing. R. Foundation for Statistical Computing, Vienna, https://www.R-project.org/
- Redak R.A., Purcell A.H., Lopes J.R., Blua M.J., Mizell iii R.F. & Andersen P.C. 2004: The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. - Annu. Rev. Entomol. 49: 243-270.
Go to original source...
- Ridgway R.L. & Kinzer R.E. 1974: Chrysopids as predators of crop pests. - Entomophaga (Mém. H. S.) 7: 45-51.
- Ridgway R.L. & Murphy W.L. 1984: Biological control in the field. In Canard M., Semeria Y. & New T.R. (eds): Biology of Chrysopidae. W. Junk, The Hague, pp. 220-227.
- Rudolf V.H.W. 2008: Consequences of size structure in the prey for predator-prey dynamics: the composite functional response. - J. Anim. Ecol. 77: 520-528.
Go to original source...
- Sahayaraj K., Saranya B., Sayed S., Estelle L.Y.L. & Madasamy K. 2021: Biofoam of spittlebug, Poophilus costalis (Walker): preferential sites, temperature regulation, chemical composition and antimicrobial activity. - Insects 12(4): 340, 17 pp.
Go to original source...
- Saponari M., Boscia D., Nigro F. & Martelli G.P. 2013: Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (southern Italy). - J. Plant Pathol. 95: 659-668.
- Saponari M., Loconsole G., Cornara D., Yokomi R.H., de Stradis A., Boscia D., Bosco D., Martelli G.P., Krugner R. & Porcelli F. 2014: Infectivity and transmission of Xylella fastidiosa Salento strain by Philaenus spumarius L., (Hemiptera: Aphrophoridae) in Puglia, Italy. - J. Econ. Entomol. 107: 1316-1319.
Go to original source...
- Sattar M., Hamed M. & Nadeem S. 2007: Predatory potential of Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) against cotton mealy bug. - Pak. Entomol. 29: 103-106.
- Senior L.J. & McEwen P.K. 2001: The use of lacewings in biological control. In McEwen P., New T.R. & Whittington A.E. (eds): Lacewings in the Crop Environment. Cambridge University Press, Cambridge, UK, pp. 296-302.
Go to original source...
- Shah P.A. & Pell J.K. 2003: Entomopathogenic fungi as biological control agents. - Appl. Microbiol. Biotechnol. 61: 413-423.
Go to original source...
- Thangam S.D., Selvakumar G., Verghese A. & Kamala Jayanthi P.D. 2013: Natural mycosis of mango leafhoppers (Cicadellidae: Hemiptera) by Fusarium sp. - Biocontr. Sci. Technol. 24: 229-232.
Go to original source...
- The European Commission 2023: Neonicotinoids. URL: https://food.ec.europa.eu/plants/pesticides/approval-active-substances/renewal-approval/neonicotinoids_en/ (last accessed 26 Oct. 2023).
- Toledo A.V., Virla E., Humber R.A., Paradell S.L. & Lastra C.C. 2006: First record of Clonostachys rosea (Ascomycota: Hypocreales) as an entomopathogenic fungus of Oncometopia tucumana and Sonesimia grossa (Hemiptera: Cicadellidae) in Argentina. - J. Invertebr. Pathol. 92: 7-10.
Go to original source...
- Vicente-Díez I., Blanco-Pérez R., González-Trujillo M.M., Pou A. & Campos-Herrera R. 2021: Insecticidal effect of entomopathogenic nematodes and the cell-free supernatant from their symbiotic bacteria against Philaenus spumarius (Hemiptera: Aphrophoridae) nymphs. - Insects 12(5): 448, 12 pp.
Go to original source...
- Weiser Erlandson L.A. & Obrycki J.J. 2010: Predation of immature and adult Empoasca fabae (Harris) (Hemiptera: Cicadellidae) by three species of predatory insects. - J. Kans. Entomol. Soc. 83: 1-6.
Go to original source...
- Wilson H., Miles A.F., Daane K.M. & Altieri M.A. 2015: Vineyard proximity to riparian habitat influences Western grape leafhopper (Erythroneura elegantula Osborn) populations. - Agric. Ecosyst. Environ. 211: 43-50.
Go to original source...
- Yan H.X., Zheng J.W., Wang X.F., Cui J.Z. & Li H.P. 2019: Exploring the potential of a strain of entomopathogenic Pestalotiopsis spp. in controlling Aphrophora flavipes. - Int. J. Agric. Biol. 21: 115-119.
- Yousef M., Garrido-Jurado I., Ruíz-Torres M. & Quesada-Moraga E. 2017: Reduction of adult olive fruit fly populations by targeting preimaginals in the soil with the entomopathogenic fungus Metarhizium brunneum. - J. Pest Sci. 90: 345-354.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.