Eur. J. Entomol. 101 (3): 373-377, 2004 | DOI: 10.14411/eje.2004.052

Sex- and morph-specific predation risk: Colour or behaviour dependency?

Hans VAN GOSSUM1,*, Tim ADRIAENS2, Henri DUMONT3, Robby STOKS4
1 Evolutionary Biology Group, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
2 Institute for Nature Conservation, Kliniekstraat 25, B-1070 Brussels, Belgium; e-mail: tim.adriaens@instant.be
3 Institute of Animal Ecology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium; e-mail: Henri.Dumont@rug.ac.be
4 Laboratory of Aquatic Ecology, University of Leuven (KU Leuven), De Bériotstraat 32, B-3000 Leuven, Belgium

The coexistence of discrete morphs within a species, with one morph more conspicuous than the other(s) is often thought to result from both sexual selection and predation. In many damselflies, sexual dimorphism occurs jointly with multiple female colour morphs. Typically, one morph is coloured like the male (andromorph), while the other(s) is not (gynomorph(s)). The mechanisms contributing to the maintenance of such female polymorphism in damselflies remain poorly understood, especially the role of predation. We tested the detectability of two different female colour morphs of the damselfly, Enallagma cyathigerum, using human observers as model predators; andromorphs were detected more frequently than gynomorphs. Field data on mortality of males and the two different female morphs due to predation or drowning were also collected, and these observations support morph-specific mortality. In natural populations predation risk was higher in males than females; gynomorphs, however, were more prone to predation than andromorphs. Differences in behaviour between morphs, rather than colour, may explain this result.

Keywords: Behaviour, colour, Odonata, Enallagma cyathigerum, damselfly, detection, polymorphism, andro-, gynomorphs, predation, survival

Received: May 28, 2003; Revised: December 12, 2003; Accepted: April 21, 2004; Published: September 20, 2004  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
GOSSUM, H.V., ADRIAENS, T., DUMONT, H., & STOKS, R. (2004). Sex- and morph-specific predation risk: Colour or behaviour dependency? EJE101(3), 373-377. doi: 10.14411/eje.2004.052
Download citation

References

  1. Andres J.A. & Cordero A. 2001: Survival rates in a natural population of Ceriagrion tenellum (Villers): effects of sex and female phenotype. Ecol. Entomol. 26: 341-346 Go to original source...
  2. Andres J.A., Sanchez-Guillen R.A. & Cordero A.C. 2000: Molecular evidence for selection on female color polymorphism in the damselfly Ischnura graellsii. Evolution 54: 2156-2161 Go to original source...
  3. Andersson M. 1994: Sexual Selection. Princeton University Press, Princeton, 624 pp
  4. Anholt B.R. 1997: Sexual size dimorphism and sex-specific survival in adults of the damselfly Lestes disjunctus. Ecol. Entomol. 22: 127-132 Go to original source...
  5. Bond A.B. & Kamil A.C. 2002: Visual predators select for crypticity and polymorphism in virtual prey. Nature 415: 609-613 Go to original source...
  6. Corbet P.S. 1999: Dragonflies: Behaviour and Ecology of Odonata. Harley Books, Essex, 829 pp
  7. Cordero A. 1995: Correlates of male mating success in two natural populations of the damselfly Ischnura graellsii (Odonata: Coenagrionidae). Ecol. Entomol. 61: 769-780 Go to original source...
  8. Cordero A., Carbone S.S. & Utzeri C. 1998: Mating opportunities and mating costs are reduced in androchrome female damselflies, Ischnura elegans (Odonata). Anim. Behav. 55: 185-197 Go to original source...
  9. Cuadrado M., Martin J. & Lopez P. 2001: Camouflage and escape decisions in the common chameleon Chamaeleo chamaeleon. Biol. J. Linn. Soc. 72: 547-554 Go to original source...
  10. Endler J.A. 1986: Natural Selection in the Wild. Princeton University Press, Princeton, 354 pp
  11. Fincke O.M. 1982: Lifetime mating success in a natural population of the damselfly Enallagma hageni (Walsh) (Odonata: Coenagrionidae). Behav. Ecol. Sociobiol. 10: 293-302 Go to original source...
  12. Fincke O.M. 1994: Female colour polymorphism in damselflies: failure to reject the null hypothesis. Anim. Behav. 47: 1249-1266 Go to original source...
  13. Forbes M.R.L. 1994: Tests of hypotheses for female-limited polymorphism in the damselfly, Enallagma boreale Selys. Anim. Behav. 47: 724-726 Go to original source...
  14. Forbes M.R.L., Richardson J.M.L. & Baker R.L. 1995: Frequency of female morphs is related to an index of male density in the damselfly, Nehalennia irene (Hagen). Ecoscience 2: 28-33 Go to original source...
  15. Forsman A. & Appelqvist S. 1999: Experimental manipulation reveals differential effects of colour pattern on survival in male and female pygmy grasshoppers. J. Evol. Biol. 12: 391-401 Go to original source...
  16. Garrison R.W. & Hafernik J.E. 1981: Population structure of the rare damselfly Ischnura gemina (Kennedy) (Odonata: Coenagrionidae). Oecologia 48: 377-384 Go to original source...
  17. Glanville P.W. & Allen J.A. 1997: Protective polymorphism in populations of computer-simulated moth-like prey. Oikos 80: 565-571 Go to original source...
  18. Goetmark F. & Hohlfelt A. 1995: Bright male plumage and predation risk in passerine birds: are males easier to detect than females? Oikos 74: 475-484 Go to original source...
  19. Hafernik J.E. & Garrison R.W. 1986: Mating success and survival rate in a population of damselflies: results at variance with theory? Am. Nat. 128: 353-365 Go to original source...
  20. Hamilton L.D. & Montgomerie R.D. 1989: Population demography and sex ratio in a neotropical damselfly (Odonata: Coenagrionidae) in Costa Rica. J. Tropical Ecol. 5: 159-171 Go to original source...
  21. Jackson R.R. & Li D.Q. 1998: Prey preferences and visual discrimination ability of Cyrba algerina, an araneophagic jumping spider (Araneae: Salticidae) with primitive retinae. Israel J. Zool. 44: 227-242
  22. Johnson C. 1975: Polymorphism and natural selection in ischnuran damselflies. Evol. Theory 1: 81-90
  23. Krebs J.R. & Davies N.B. 1997: Behavioural Ecology: An Evolutionary Approach. 4th edn. Blackwell Science, Oxford, 464 pp
  24. Larochelle A. 1978: Spiders as predators and prey of Odonata. Cordulia 4: 29-34
  25. Lebreton J.D., Burnham K.P., Clobert J. & Anderson D.R. 1992: Modelling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol. Monogr. 62: 67-118 Go to original source...
  26. Littell R.C., Milliken G.A., Stroup W.W. & Wolfinger R.D. 1996: SAS System for Mixed Models. Cary, NC: SAS Institute Inc. Mehta C. & Patel N. 1995: StatXact 3 for Windows, User Manual. Cambridge: CYTEL Software
  27. Michiels N.K. & Dhondt A.A. 1990: Costs and benefits associated with oviposition site selection in the dragonfly Sympetrum danae (Odonata: Libellulidae). Anim. Behav. 40: 668-678 Go to original source...
  28. Parr M.J. & Parr M. 1972: Survival rates, population density and predation in the damselfly, Ischnura elegans (Vander Linden) (Zygoptera: Coenagrionidae). Odonatologica 1: 137-141
  29. Rehfeldt G.E. 1992: Impact of predation by spiders on a territorial damselfly (Odonata: Calopterygidae). Oecologia 89: 550-556 Go to original source...
  30. Rehfeldt G.E. 1995: Naturliche Feinde, Parasiten und Fortplanzung von Libellen. Odonatological monographs 1, University of Braunschweig, 210 pp
  31. Riipi M., Alatalo R.V., Lindstroem L. & Mappes J. 2001: Multiple benefits of gregariousness cover detectability costs in aposematic aggregations. Nature 413: 512-514 Go to original source...
  32. Robertson H.M. 1985: Female dimorphism and mating behaviour in a damselfly, Ischnura ramburi: females mimicking males. Anim. Behav. 33: 805-809 Go to original source...
  33. Seber G.A.F. 1982: The Estimation of Animal Abundance. Charles Griffin, London, 654 pp
  34. Sherratt T.N. 2001: The evolution of female-limited polymorphisms in damselflies: a signal detection model. Ecol. Letters 4: 22-29 Go to original source...
  35. Sherratt T.N. & Beatty C.D. 2003: The evolution of warning signals as reliable indicators of prey defense. Am. Nat. 162: 377-389 Go to original source...
  36. Sirot L. 1999: Intersexual Conflict and Mating Avoidance in the Damselfly, Ischnura ramburi. MSc thesis, University of Florida, 65 pp
  37. Stoks R. 2001a: Male-biased sex ratios in mature damselfly populations: real or artefact? Ecol. Entomol. 26: 181-187 Go to original source...
  38. Stoks R. 2001b: What causes male-biased sex ratios in mature damselfly populations? Ecol. Entomol. 26: 188-197 Go to original source...
  39. Stoks R. & De Bruyn L. 1996: Intensive feeding of the robberfly Eutolmus rufibarbis (Diptera: Asilidae) on the damselflies Enallagma cyathigerum and Lestes sponsa (Odonata). Bull. Annls Soc. R. Belge Entomol. 132: 427-431
  40. Thompson D.J. 1989: Lifetime reproductive success in andromorph females of the damselfly Coenagrion puella (Zygoptera: Coenagrionidae). Odonatologica 18: 209-213
  41. Van Damme R. & Van Dooren T.J.M. 1999: Absolute versus per unit body length speed of prey as an estimator of vulnerability to predation. Anim. Behav. 57: 347-352 Go to original source...
  42. Van Gossum H. 1997: Inleidende Eco-Ethologische Studie van Ischnura elegans. Licenciaatsthesis, University of Antwerp, 110 pp
  43. Van Gossum H. 2001: Evolutionary Ecology of Female Colour Polymorphism in a Damselfly. PhD. thesis, University of Antwerp, 115 pp
  44. Van Gossum H., Stoks R. & De Bruyn L. 2001: Frequency-dependent male harassment and intra-specific variation in its avoidance by females of the damselfly Ischnura elegans. Behav. Ecol. Sociobiol. 51: 69-75 Go to original source...
  45. Van Gossum H., Stoks R. & De Bruyn L. 2004: Conspicuous body coloration and predation risk in damselflies: are andromorphs easier to detect than gynomorphs? Belg. J. Zool. (in press)
  46. Wyszecki G. & Stiles W.S. 1982: Colour Science: Concepts and Methods, Quantitative Data and Formulae. Wiley, New York, 935 pp

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.