
INTRODUCTION

Many species of insects in many different taxa con-
struct cocoons, some of which incorporate material from
the surroundings. Well developed cocoons are especially
characteristic of prepupal and pupal resting stages,
although partly grown larvae of some species prepare
“hibernacula” for winter. In most species, cocoons are
assumed to protect their occupants against environmental
damage or attack by natural enemies, but these roles have
seldom been tested explicitly (Danks, 2002). Specific
functions during cold conditions would be expected at
least in those species in which cocoon structure varies
seasonally.

This paper considers the potential roles that cocoons
play when conditions are cold, as listed in Table 1. It
evaluates each of these possibilities by reviewing the
available scattered information on individual cocoons.
Group responses, such as communal tents and nests, are
not included (but see Danks, 2002).

FEATURES OF COCOONS

Cocoons are constructed from silk, fibrous proteins
containing repetitive sequences of amino acids, espe-
cially alanine, glycine and serine, that are stored as a
liquid but configure into solid filaments when spun upon
secretion (Craig, 1997; Fedi  et al., 2002). Unlike most of
the cocoons made from it, silk has been studied exten-
sively. One or more types of silk are produced by many
species of arthropods from one or more different glands.
The best known insect silks are those of lepidopteran

larvae and are produced by the labial glands, the homo-
logue of the salivary glands. Typically, core filaments of
the structural element fibroin, produced from the poste-
rior section of the silk gland, are coated and fastened
together with a layer of sericin produced in the middle
section (Sehnal & Akai, 1990; Fedi  et al., 2002). Fibroin
and sericin each comprise a family of related but different
proteins. Some other proteins are also present in the silk
(see below). Silk from glands dedicated to silk production
in insects usually serves for protection (Craig, 1997), in
the broad sense that it is used to prepare structures that
enclose the individual.

The physical properties of silk vary greatly as a result
of the amino acid sequence and dimensional structure of
constituent molecules and whether or not they are
stressed or “spun” on production, as in Lepidoptera and
Hymenoptera (Craig, 1997). Spiders have especially
diverse silks and well developed spinning devices, and up
to 9 types of silk protein and 9 different silk glands are
known in some spiders (Nentwig, 1987; Craig, 1997;
Vollrath & Knight, 2001). Most focus has been placed on
the mechanical properties including the great strength of
these “biopolymers”. Silks vary widely in the degree of
tensile strength, permanent or temporary elasticity, sticki-
ness and other properties. Therefore, adaptive modifica-
tion of the properties of silks and the cocoons made from
them seems likely. Non-structural roles also have been
attributed to silk constituents. In particular, several pro-
teins that are smaller than the main fibroin and sericin
components appear to serve defensive anti-bacterial and
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anti-fungal roles (Akai, 1977; Nirmala et al., 2001a, b;
Fedi  et al., 2002; Kurioka & Yamazaki, 2002).

Dependent partly on their constituent silks, insect
cocoons vary widely in relative size, durability, structure,
shape, colour and other features (Table 2). The potential
effects of different cocoon types, which are indicated in
the final column of Table 2, have generally been sug-
gested or supposed without adequate documentation or
explicit experiments in either warm or cold regions. For
example, the colour of cocoon silk can vary, even in one
species (Peigler, 1993), suggesting potential functions in
camouflage, heat absorption or light transmission. Some
variations of silk colour in insects may depend simply on
food or other conditions experienced by the larvae, but
some of the variations in colour are genetic (e.g. Doira et
al., 1997 report silkworm mutations giving yellow, green,
reddish brown and other cocoon colours). Although these
differences are without known ecological significance,

work on spiders shows that certain web reflectances
attract prey, and there is evolution in spectral properties
(Craig et al., 1994) and colour modification according to
habitat (Craig, 1994; Craig et al., 1996). Therefore, adap-
tive modification in cocoon colour in insects would be
possible.

PROTECTION AGAINST COLD AND DRYNESS

Most cocoons provide little direct insulation (e.g. Saka-
gami et al., 1985), although they may reduce the rate at
which changes in temperature are experienced by the
occupants. However, many cocoons provide mechanical
protection (and see below) that is required for overwin-
tering in substrates such as soil. In such habitats insula-
tion is provided by the substrate or by overlying snow (cf.
Danks, 1991).

The inner layer of the cocoon of the braconid wasp
Acampsis alternipes (Nees), within which the emerged
adult overwinters prior to activity very early in spring,
retains a secretion that surrounds the meconium and con-
tains more than 50% glycerol and fatty acids (Shaw &
Quicke, 2000). Such a secretion would provide marked
cryoprotection.

Exposed habitats during cold winters often are
extremely dry (Ring & Danks, 1994; Danks, 2000), and
cocoons can provide protection against desiccation at this
time by reducing transpiration of their owners (Canard &
Vanier, 1992; Rosner & Führer, 1996), although this
potential role has more often been demonstrated for tem-
perate species at other times of year (e.g. Nowbahari &
Thibout, 1990; Tagawa, 1996; Zamora-Munoz & Svens-
son, 1996).
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Other roles integrated with roles in cold (see text
and Table 2)

Other

Protect against water loss, mechanical damage
and natural enemies while dormant

Immobility

Prevent inoculative freezing
Resist mechanical forces

Ice

Insulate
Resist drying
Acquire heat

Cold

Potential rolesFeature

TABLE 1. Summary of the potential roles of cocoons in cold
conditions.

Heat gain through insolation
Reduced heat loss from wind
Streamlining in water or air currents

Aligned to substrate or
environmental conditions

RandomOrientation

Resistance to displacement or damageAttached to substrateUnattachedAttachment

Camouflage
Changed cue reception

Dark, opaqueWhite or light,
transparent

Colour

Possible resistance to external forces or water lossSpherical or subsphericalOvoid or fusiformShape

Camouflage
Durability

Incorporates much
environmental material

Silk onlyComposition of wall

Protection against inoculative freezing, predators,
etc.

Changed cue detection
Heat retention

Complex, thick, double One thin layerStructure of wall

Facilitates adult emergenceIncludes complex exit
structures, etc.

Simple tubeStructure

Resistance to damage
Reduced permeability to water vapour and toxic

substances

Tough and durableFlimsyRobustness

Resistance to some kinds of damageTightly applied to occupantLoosely around
occupant

Relative size

Potential effect of modificationModificationSimple conditionFeature

TABLE 2. Range of features of insect cocoons and some potential effects of modified features (from information summarized in
Danks 1987, Table 6, and many other sources; see text for some examples).



PROTECTION AGAINST ICE

Cocoons serve in two ways to protect against sur-
rounding ice during winter. In some terrestrial species,
the cocoon wall isolates the prepupal or pupal integument
from ice crystals on the surface or surroundings of the
cocoon, and thus maintains supercooling by preventing
inoculative freezing (e.g. Sakagami et al., 1985).

In some aquatic species, cocoons appear to limit
damage by providing mechanical protection during the
freezing of surrounding water and its expansion to ice.
Chironomid midges make special winter cocoons that are
believed to serve this role. Such winter cocoons are much
more robust than the summer feeding shelters of the same
species, with thicker walls but incorporating much less
substrate material. Moreover, they are tightly applied to
the bodies of the larvae, which are folded within them in
characteristic ways according to species (review by
Danks, 1971; Danks & Jones, 1978; Kornijów, 1992).
Comparably robust aestivation cocoons in species from
temporary water bodies (e.g. Grodhaus, 1980) pre-
sumably serve to protect against mechanical damage too.

Several properties of silks are potentially relevant in
freezing conditions. For example, spider silk enhances ice
nucleation: the mean supercooling point of 10 µl droplets
of distilled water is –14.1°C alone but –7°C with silk of
the agelenid spider Agelena opulenta L. Koch (Murase et
al., 2001). In the presence of 100 ppm of ice-nucleating
protein, a particularly effective ice nucleator, freezing of
similar droplets occurs at –3.5°C. Silkworm sericin has
potential as a cryoprotective agent for cells or enzymes
(Tsujimoto et al., 2001). However, it is not clear how
such properties of purified cocoon elements might be
relevant in nature.

HEAT GAIN

Some cocoons help in the acquisition of solar heat.
Dark structures are especially effective, because dark pig-
ments absorb heat, and surrounding hairs, loose fibres or
transparent layers trap this heat by restricting disturbance
of the warm boundary layer by wind or convection. Solar
heating of this sort is well known in individual insects
and plant parts especially from the arctic (Kevan, 1973,
1975, 1989, 1990; Kukal, 1991). Kevan (1973) classified
heated arctic flowers as microgreenhouses, hairy heat
traps, hanging bells, solar furnaces and flared bells. Par-
allel adaptations for solar heating have been demonstrated
in cocoons of the lymantriid moth Gynaephora groen-

landica (Wocke), in which (unlike related species) the
cocoon is double, with a dark inner layer and a translu-
cent outer layer [Kevan et al., 1982 (as G. rossi); Lyon &
Cartar, 1996].

The heat gained by such structures, for example as
much as 14°C above ambient in summer (Kevan et al.,
1982), is influenced by their orientation. The cocoons of
Gynaephora groenlandica, reflecting the behaviour of the
caterpillars that build them, appear to be aligned to maxi-
mize solar heat gain by exposure to the sun and to reduce
convective heat loss by minimizing exposure to pre-
vailing winds (Kevan et al., 1982; Lyon & Cartar, 1996).

OTHER ROLES DURING INACTIVITY

When it is cold, insects (like other poikilotherms) are
immobilized, whether they are merely quiescent or enter
diapause. Cocoons protect such individuals, which cannot
move in response to environmental threats such as dry
conditions and natural enemies. For example, cocoons
made for diapause or for winter tend to be more sturdy,
and may have more layers, than their summer counter-
parts. Many examples are cited by Danks (1987, Table 6;
see also Mello & Garafalo, 1986; Donovan, 1991).
Typical cocoons are anchored in winter, like some of the
summer structures, to prevent displacement by wind or
water currents (e.g. Gardiner, 1982; Hauer & Stanford,
1982).

Robust and immobile cocoons would protect against
mechanical damage or abrasion of the waxy waterproof
layer of the cuticle (cf. Goto et al., 1997). Some cocoons
protect against natural enemies. Robustness resists pene-
tration by parasitoids and predators. Very tough cocoons
can be penetrated by only a few such species (references
cited by Gross, 1993). Even when the cocoon wall can be
penetrated more easily, the ovipositors of some parasi-
toids cannot reach their target inside, because the hosts
build relatively large cocoons (cf. Gross, 1993). Suspen-
sion or complex structures, such as flocculent threads on
the surface, also may impede parasitoids and predators
(Gross, 1993; cf. Hieber, 1992 for spider egg “cocoons”).
Cocoon silk has anti-bacterial and anti-fungal actions (see
above). Other cocoons are more or less waterproof,
defending against immersion (e.g. Sagné & Canard, 1984
for the lacewing Chrysopa perla (L.) in winter; some bees
use waxes or resins for waterproofing, e.g. Roubik &
Michener, 1980). Moreover, many general functions of
cocoons persist in winter, when they may be especially
important even though metabolism is suppressed because
dormancy lasts for such a long time.

INTEGRATION OF ROLES

Cocoons have many roles, some of which have no par-
ticular linkages with cold (for example during summer
activity), including protection against physical conditions,
toxic substances (e.g. Bartell et al., 1976; Halpern et al.,
2002), natural enemies, and in relation to resources (cf.
Danks, 2002). Robust shelters protect against a variety of
physical conditions and against natural enemies, although
such structures are costly in resources for building (cf.
Stevens et al., 1999 for caddis cases). Silk comprises a
significant proportion, up to 50% or more of the weight,
of many prepupal larvae just before they spin cocoons.
For example, the silk cocoon weighs as much as the pupa
in the commercial silkworm Bombyx mori L. as well as in
some saturniid moths (e.g. Dash et al., 1992). More than
10% of prepupal weight is devoted to cocoon production
even in many Hymenoptera (e.g. Bosch & Vicens, 2002).

Cocoons have also been implicated in mediating infor-
mation for control of the life cycle, including the attenua-
tion or transmittal of photoperiodic cues to induce
diapause. Williams et al. (1965) showed that the cocoon
of the silk moth Antheraea pernyi (Guérin-Méneville)
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acts as a light-integrating sphere, so that light intensity for
the pupa within the cocoon is much higher than would be
expected from the amount transmitted directly through
the cocoon walls. The diapause cocoons of the braconid
Microplitis demolitor Wilkinson appear to mediate the
effects of an increase in humidity that ends diapause
(Seymour & Jones, 2000). Diapause ends earlier in indi-
viduals not enclosed in a cocoon, suggesting that some
substance in the cocoon is degraded by humidity, where-
upon the humidity cues that end diapause can be per-
ceived by the prepupa within (Seymour & Jones, 2000, p.
484).

General cocoon functions often are integrated with
those linked to cold, because many cocoon features (cf.
Table 2) can serve several simultaneous functions. For
example, the robust cocoons of the moth Leguminivora

glycinivorella (Matsumura) protect against flooding as
well as ice inoculation (Sakagami et al., 1985). Stout
caddis cases can provide camouflage or mechanical pro-
tection against bird predation (cf. Otto, 1983), resist
drying (Zamora-Munoz & Svensson, 1996), and prevent
displacement.

Cocoons or cocoon silks have other properties that
probably have no adaptive value but reflect features of
silk as a material. For example, cocoons (and the cuticle)
of the wasp Vespa orientalis L. have photoelectric prop-
erties, transducing light into electrical energy (Ishay et al.,
1992).

CONCLUSIONS

Although evidence is fragmentary, cocoons in many
species clearly play important roles in enhancing survival
during cold conditions. They allow insulated habitats to
be occupied in winter, offset the effects of ice, and with-
stand biotic and abiotic challenges during inactivity.
However, there has been relatively little specific examina-
tion of these roles. In future, therefore, features of
cocoons have to be characterized explicitly. For example,
studies of the properties of component silks should not be
confined only to mechanical strength and the potential for
commercial applications, but should cover a wider range
of features likely to be of adaptive value to cocoon occu-
pants. Examining cocoon structures and silk properties,
including comparisons among related species from dif-
ferent climates and habitats, would help to quantify such
features as resistance to inoculative freezing and penetra-
tion by natural enemies and water. In particular, carefully
designed experimental work is required to measure the
contributions of the various features of cocoons to winter
survival in nature.
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