Eur. J. Entomol. 114: 133-139, 2017 | 10.14411/eje.2017.018

Adaptive significance of the prolonged diapause in the western Mediterranean lycaenid butterfly Tomares ballus (Lepidoptera: Lycaenidae)

Rafael OBREGÓN, Juan FERNÁNDEZ HAEGER, Diego JORDANO
Department of Botany, Ecology and Plant Physiology, University of Córdoba, E-14071, Córdoba, Spain; e-mails: rafaobregonr@gmail.com, bv1fehaj@uco.es, bv1jobad@uco.es

Diapause is a common dormancy strategy exhibited by many species of invertebrates and insects to temporarily avoid seasonally recurring unfavourable conditions for their development, most usually in winter. Less frequently, a prolonged diapause lasting two or more years is described in species living in unpredictable environments where it is adaptive, but with significant costs. In this paper we examine the occurrence of prolonged diapause in the lycaenid butterfly Tomares ballus. Pupae of this species undergo an obligate diapause from mid-May to late January the following year. However, during our rearing experiments (from 2009 to 2016) the emergence of adults occurred sequentially and a fraction of the pupae remained in diapause for up to seven years. The annual percentage emergence after the first year of diapause was 45.6%, and only barely exceeded 50.0% in 2015. Remarkably, 12 pupae (11.4% of the initial brood) remained in diapause in their eighth year. The negative exponential equation fitted to the emergence data suggests that further emergences may occur within the next five years. Therefore, the potential for successful prolonged diapause of T. ballus pupae may be more than 10 years. The adaptive value of this strategy is discussed in relation to the effects of adverse and unpredictable weather during the flight period of the butterfly, intra-guild competition, parasitoids and changes in habitat quality. We suggest that this strategy may also be exhibited by other species of Mediterranean lycaenids.

Keywords: Lepidoptera, Lycaenidae, Tomares ballus, prolonged diapause, evolutive adaptation, changing environment, competition, parasitoids

Received: October 14, 2016; Accepted: February 3, 2017; Published online: March 14, 2017

Download citation

References

  1. Andreawartha H.G. 1952: Diapause in relation to the ecology of insects. - Biol. Rev. 27: 50-107. Go to original source...
  2. Benyamini D. 1999: The biology and conservation of Iolana alfierii Wiltshire, 1948: The Burning Bush Blue (Lepidoptera: Lycaenidae). - Linneana Belg. 17: 119-134.
  3. Benyamini D. 2008: Is Euchloe falloui Allard, 1867 (Pieridae) the butterfly with the longest diapause? - Nota Lepid. 31: 293-295.
  4. Bergman M., Gotthard K., Berger D., Olofsson M., Kemp D.J. & Wiklund C. 2007: Mating success of resident versus non-resident males in a territorial butterfly. - Proc. R. Soc. Lond. (B) 274: 1659-1665. Go to original source...
  5. Danilevskii A.S. 1965: Photoperiodism and Seasonal Development of Insects. Oliver and Boyd, Edinburgh, 283 pp.
  6. Danforth B.N. 1999: Emergence dynamics and bet hedging in a desert bee, Perdita portalis. - Proc. R. Soc. Lond. (B) 266: 1985-1994. Go to original source...
  7. Danks H.V. 1987: Insect Dormancy: An Ecological Perspective. Biological Survey of Canada, Ottawa, 439 pp.
  8. Denlinger D.L. 2002: Regulation of diapause. - Annu. Rev. Entomol. 47: 93-122. Go to original source...
  9. Descimon H.A. 1990: Pourquoi y a-t-il moins de papillons aujourd'hui? - Insectes 77: 6-10.
  10. Descimon H.A. 1992: Le faux-cuivre smaragdin, Tomares ballus F. In New T.R. (ed.): Conservation Biology of Lycaenidae (Butterflies). IUCN Species Survival Commission, Gland, 184 pp.
  11. Ellers J. & Van Alphen J.J.M. 2002: A trade-off between diapause duration and fitness in female parasitoids. - Ecol. Entomol. 27: 279-284. Go to original source...
  12. Fernández Haeger J. & Jordano D. 1982: Fenología de una comunidad mediterránea de mariposas diurnas. - Biol. Ecol. Mediterran. 9: 19-28.
  13. Gil-T. F. 2004: Nuevos datos sobre la biología de Iolana iolas Ochsenheimer (Lepidoptera, Lycaenidae) y su interacción con himenópteros mirmecófilos, fitófagos y parasitoides (Hymenoptera, Formicidae, Eurytomidae, Ichneumonoidea). - Bol. Soc. Entomol. Aragon. 34: 139-145.
  14. Hanski I. 1988: Four kinds of extra long diapause in insects: A review of theory and observations. - Ann. Zool. Fenn. 25: 37-53.
  15. Held C. & Spieth H.R. 1999: First evidence of pupal summer diapause in Pieris brassicae L.: the evolution of local adaptedness. - J. Insect Physiol. 45: 587-598. Go to original source...
  16. Jordano D., Fernández Haeger J. & Rodríguez J. 1990a: The life-history of Tomares ballus (Fabricius, 1787) (Lep.: Lycaenidae): phenology and host plant use in southern Spain. - J. Res. Lepid. 28: 112-122
  17. Jordano D., Fernández Haeger J. & Rodríguez J. 1990b: The effect of seed predation by Tomares ballus (Lepidoptera: Lycaenidae) on Astragalus lusitanicus (Fabaceae): determinants of differences among patches.- Oikos 57: 250-256. Go to original source...
  18. Kan P., Kan-van Limburg Stirum B. & Bertaud P. 2010: Contribution à la connaissance de Tomares ballus (Fabricius, 1787) (Lepidoptera: Lycaenidae). - Rev. Lépidopt. Fr. 19: 60-74.
  19. Kurban A., Yoshida H., Izumi Y., Sonoda S. & Tsumuki H. 2007: Pupal diapause of Helicoverpa armigera (Lepidoptera: Noctuidae): sensitive stage for thermal induction in the Okayama (western Japan) population. - Bull. Entomol. Res. 97: 219-223. Go to original source...
  20. Mahdjoub T. & Menu F. 2008: Prolonged diapause: a trait increasing invasion speed? - J. Theor. Biol. 251: 317-330. Go to original source...
  21. Moraiti C.A., Nakas C.T. & Papadopoulos N.T. 2012: Prolonged pupal dormancy is associated with significant fitness cost for adults of Rhagoletis cerasi (Diptera: Tephritidae). - J. Insect Physiol. 58: 1128-1135. Go to original source...
  22. Moraiti C.A., Nakas C.T. & Papadopoulos N.T. 2014: Diapause termination of Rhagoletis cerasi pupae is regulated by local adaptation and phenotypic plasticity: Escape in time through bet-hedging strategies. - J. Evol. Biol. 27: 43-54. Go to original source...
  23. Muñoz Sariot M.G. 2011: Biología y Ecología de los Licénidos Españoles. M.G. Muñoz Sariot, Granada, 265 pp.
  24. Nakamura I. & Ae S.A. 1977: Prolonged pupal diapause of Papilio alexanor: arid zone adaptation directed by larval host plant. - Ann. Entomol. Soc. Am. 70: 481-484. Go to original source...
  25. Obregón R. 2015: Interacciones Ecológicas y Modelos de Distribución Actual y Futura de Lepidópteros en Andalucía. PhD Thesis, Universidad de Córdoba, 232 pp.
  26. Obregón R. & Prunier F. 2014: Diversidad y ecología de una comunidad de ropalóceros (Lepidóptera) en el arroyo Pedroches y su entorno: Un paraje natural periurbano a conservar (Córdoba, España). - Rev. Gad. Entomol. 5: 183-201.
  27. Obregón R., de Haro S., Jordano D. & Fernández Haeger J. 2012: Lampides boeticus (Lepidoptera: Lycaenidae) preys on cocoons of its own specific parasitoid Cotesia specularis (Hymenoptera: Braconidae). - J. Insect Behav. 25: 514-517. Go to original source...
  28. Obregón R., Shaw M.R., Fernández Haeger J. & Jordano D. 2015: Parasitoid and ant interactions of some Iberian butterflies (Insecta: Lepidoptera). - SHILAP Revta Lepid. 43: 439-454.
  29. Powell J.A. 1986: Records of prolonged diapause in Lepidoptera. - J. Res. Lepid. 25: 83-109.
  30. Powell J.A. 1989: Synchronized, mass-emergences of a yucca moth, Prodoxus y-inversus (Lepidoptera: Prodoxidae), after 16 and 17 years in diapause. - Oecologia 81: 490-493. Go to original source...
  31. Powell J.A. 2001: Longest insect dormancy: Yucca moth larvae (Lepidoptera: Prodoxidae) metamorphose after 20, 25, and 30 years in diapause. - Ann. Entomol. Soc. Am. 94: 677-680. Go to original source...
  32. Pratt G.F. & Ballmer G.R. 1986: The phenetics and comparative biology of Euphilotes enoptes (Boisduval) (Lycaenidae) from the San Bernardino Mountains. - J. Res. Lepid. 25: 121-135.
  33. Rajon E., Desouhant E., Chevalier M., Débias F. & Menu F. 2014: The evolution of bet hedging in response to local ecological conditions. - Am. Nat. 184: 1-15. Go to original source...
  34. Ratcliff W.C., Hawthorne P. & Libby E. 2015: Courting disaster: How diversification rate affects fitness under risk. - Evolution 69: 126-135. Go to original source...
  35. Sakamoto Y., Hirai N. & Ishii M. 2015: Effects of photoperiod and temperature on the development and diapause of the endangered butterfly Zizina emelina (Lepidoptera: Lycaenidae). - J. Insect Conserv. 19: 639-645. Go to original source...
  36. Sands D.P.A. & New T.R. 2008: Irregular diapause, apparency and evaluating conservation status: anomalies from the Australian butterflies. - J. Insect Conserv. 12: 81-85. Go to original source...
  37. Sunose T. 1978: Studies on extended diapause in Hasegawaia sasacola Monzen (Diptera, Cecidomyiidae) and its parasites. - Kontyu 46: 400-415.
  38. Tauber M.J., Tauber C.A. & Masaki S. 1986: Seasonal Adaptations of Insects. Oxford University Press, New York, 411 pp.
  39. Templado J. 1981: Diapausa y voltinismo en Euchloe ausonia crameri Butler. - Eos 57: 273-277.
  40. Thomas C.D. & Mallorie H.C. 1985: Rarity, species richness and conservation: butterflies of the Atlas mountains in Morocco. - Biol. Conserv. 33: 95-117. Go to original source...
  41. Tielbörger K., Petrù M. & Lampei C. 2012: Bet-hedging germination in annual plants: A sound empirical test of the theoretical foundations. - Oikos 121: 1860-1868. Go to original source...
  42. Van Swaay C., Cuttelod A., Collins S., Maes D., López Munguira M., ©a¹iæ M., Settele J., Verovnik R., Verstrael T., Warren M., Wiemers M. & Wynhof I. 2010: European Red List of Butterfies. Publications Office of the European Union, Luxembourg, 58 pp.
  43. Wiklund C. 2003: Sexual selection and the evolution of butterfly mating systems. In Boggs C.L, Watt B.W. & Ehrlich P.R. (eds): Butterflies - Ecology and Evolution Taking Flight. Chicago University Press, Chicago, pp. 67-90.
  44. Xu W.H., Sato Y., Ikeda M. & Yamashita O. 1995: Stage-dependent and temperature-controlled expression of the gene encoding the precursor protein of diapause hormone and pheromone biosynthesis activating neuropeptide in the silkworm, Bombyx mori. - J. Biol. Chem. 270: 3804-3808. Go to original source...
  45. Zhang T.Y., Sun J.S., Zhang Q.R., Xu J., Jiang R.J. & Xu W.H. 2004: The diapause hormone-pheromone biosynthesis activating neuropeptide gene of Helicoverpa armigera encodes multiple peptides that break, rather than induce, diapause. - J. Insect Physiol. 50: 547-554. Go to original source...
  46. Zhang Q., Zdarek J., Nachman R.J. & Denlinger D.L. 2008: Diapause hormone in the corn earworm, Helicoverpa zea: Optimum temperature for activity, structure-activity relationships, and efficacy in accelerating flesh fly pupation. - Peptides 29: 196-205. Go to original source...