Eur. J. Entomol. 114: 25-33, 2017 | 10.14411/eje.2017.004

Assessing the efficiency of UV LEDs as light sources for sampling the diversity of macro-moths (Lepidoptera)

Marco INFUSINO1, Gunnar BREHM2, Carlo DI MARCO1, Stefano SCALERCIO1
1 Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Unità di ricerca per la selvicoltura in ambiente mediterraneo, Rende (CS), Italy; e-mails: marco.infusino@crea.gov.it, carlo_dimarco@crea.gov.it, stefano.scalercio@crea.gov.it
2 Friedrich-Schiller-Universität Jena, Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Jena, Germany; e-mail: gunnar.brehm@uni-jena.de

Light trapping is the most widely used tool for determining the diversity of nocturnal Lepidoptera, but UV LEDs have yet to be used as light sources for the large-scale monitoring of Lepidoptera. We assessed the efficiency of this novel light source for sampling moths using a Heath type moth equipped with a strip of 150 high brightness UV LEDs (emission peak 398 nm, ~ 15 W) powered by a 12 V battery. We compared the number of individuals, the number of species and the Geometridae / Noctuidae ratio recorded for the samples collected using UV LED traps with those collected in two monitoring programs carried out in the same geographic region using two different light sources: a 200 W incandescent lamp (Rothamsted trap) and a 160 W mercury vapour lamp (manual catch). The total catch consisted of 61,120 individuals belonging to 699 species. The species richness rarefaction curves revealed that the Rothamsted trap collected fewer species and individuals than UV LED traps. Furthermore, the median numbers of species and individuals caught by UV LED traps fell within the range of those caught by mercury vapour lamp traps. In addition, the community composition recorded using incandescent lamps and UV LEDs was similar. The data obtained using UV LED traps, in absolute terms and in comparison with the other light sources and different sampling methods, clearly reveal that this light source is suitable for sampling macro-moth communities. For field work UV LEDs have many advantages, as they are resistant to mechanical damage, easily protected from heavy rain and energy efficient.

Keywords: Lepidoptera, light trapping, UV LEDs, diversity, forest ecosystems, Mediterranean Basin, Italy

Received: September 6, 2016; Accepted: November 25, 2016; Published online: January 17, 2017

Download citation

References

  1. Axmacher J.C. & Fiedler K. 2004: Manual versus automatic moth sampling at equal light sources - A comparison of catches from Mt. Kilimanjaro. - J. Lepidopt. Soc. 58: 196-202.
  2. Barlow H.S. & Woiwod I.P. 1989: Moth diversity of a tropical forest in Peninsular Malaysia. - J. Trop. Ecol. 5: 37-50. Go to original source...
  3. Bates A.J., Sadler J.P., Everett G., Grundy D., Lowe N., Davis G., Baker D., Bridge M., Freestone J.C.R., Gardner D. et al. 2013: Assessing the value of the Garden Moth Scheme citizen science dataset: how does light trap type affect catch? - Entomol. Exp. Appl. 146: 386-397. Go to original source...
  4. Beck J. & Linsenmair K.E. 2006: Feasibility of light-trapping in community research on moths: attraction radius of light, completeness of samples, nightly flight times and seasonality of Southeast-Asian hawkmoths (Lepidoptera: Sphingidae). - J. Res. Lepid. 39: 18-37.
  5. Bella S., Russo P. & Parenzan P. 1999: Contributi alla conoscenza della Lepidotterofauna siciliana. VII - I Lepidotteri Eteroceri del Pantano Longarini (Siracusa, Sicilia Sud-orientale). - Phytophaga 9: 15-37.
  6. Brehm G. 2007: Contrasting patterns of vertical stratification in two moth families in a Costa Rican lowland rain forest. - Basic Appl. Ecol. 8: 44-54. Go to original source...
  7. Brehm G. & Axmacher J.C. 2005: A comparison of manual and automatic moth sampling methods (Lepidoptera: Arctiidae, Geometridae) in a rain forest in Costa Rica. - Environ. Entomol. 35: 754-764.
  8. Brehm G. & Fiedler K. 2005: Diversity and community structure of geometrid moths of disturbed habitat in a montane area in the Ecuadorian Andes. - J. Res. Lepid. 38: 1-14.
  9. Choi S.W. & Miller J.C. 2013: Species richness and abundance among macromoths: a comparison of taxonomic, temporal and spatial patterns in Oregon and South Korea. - Entomol. Res. 43: 312-321. Go to original source...
  10. Cohnstaedt L., Gillen J.I. & Munstermann L.E. 2008: Light-emitting diode technology improves insect trapping. - J. Am. Mosq. Contr. 24: 331-334. Go to original source...
  11. Colwell R.K. 2013: EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples. Ver. 9. User's Guide and application published at URL: http://purl.oclc.org/estimates.
  12. Cowan T. & Gries G. 2009: Ultraviolet and violet light: attractive orientation cues for the Indian meal moth, Plodia interpunctella. - Entomol. Exp. Appl. 131: 148-158. Go to original source...
  13. Dapporto L., Fabiano F. & Balderi F. 2005: I Macrolepidotteri della Val di Farma (Toscana). - Aldrovandia 1: 37-54.
  14. Downer R.A. & Ebert T.A. 2014: Macrolepidoptera biodiversity in Wooster, Ohio from 2001 through 2009. - Zookeys 452: 79-105. Go to original source...
  15. Fiedler K. & Schulze C.H. 2004: Forest modification affects diversity, but not dynamics of specious tropical pyraloid moth communities. - Biotropica 36: 615-627.
  16. Green D., MacKay D. & Whalen M. 2012: Next generation insect light traps: The use of LED light technology in sampling emerging aquatic macroinvertebrates. - Austral. Entomol. 39: 189-194.
  17. Heath J. 1965: A genuinely portable MV light trap. - Entomol. Rec. J. Var. 77: 236-238.
  18. Highland S.A., Miller J.C. & Jones J.A. 2013: Determinants of moth diversity and community in a temperate mountain landscape: vegetation, topography, and seasonality. - Ecosphere 4(10): 1-22. Go to original source...
  19. Holloway J.D., Kibby G. & Peggie D. 2001: The Families of Malesian Moths and Butterflies. Fauna Malesiana Handbook 3. Brill, Leiden, Boston, Köln, 463 pp.
  20. Horváth B., Tóth V. & Lakatos F. 2016: Relation between canopy-layer traits and moth communities in sessile oak-hornbeam forests. - North-West. J. Zool. 12: 213-219.
  21. Hunter M.D., Kozlov M.V., Itämies J., Pulliainen E., Bäck J., Kyrö E.M. & Niemelä P. 2014: Current temporal trends in moth abundance are counter to predicted effects of climate change in an assemblage of subarctic forest moths. - Glob. Change Biol. 20: 1723-1737. Go to original source...
  22. Intachat J. & Woiwod I.P. 1999: Trap deign for monitoring moth biodiversity in tropical rainforests. - Bull. Entomol. Res. 89: 153-163. Go to original source...
  23. Jonason D., Franzén M. & Ranius T. 2014: Surveying moths using light traps: effects of weather and time of year. - PLoS ONE 9(3): e92453, 7 pp. Go to original source...
  24. Karsholt O. & Razowski J. 1996: The Lepidoptera of Europe: A Distributional Checklist. Apollo Books, Stenstrup, 380 pp.
  25. Merckx T. & Slade E.M. 2014: Macro-moth families differ in their attraction to light: implications for light-trap monitoring programmes. - Insect Conserv. Diver. 7: 453-461. Go to original source...
  26. Nowinszky L., Puskas J., Tar K., Hufnagel L. & Ladanyi M. 2013: The dependence of normal and black light type trapping results upon the wingspan of moth species. - Appl. Ecol. Env. Res. 11: 593-610. Go to original source...
  27. Parenzan P. & De Marzo L. 1981: Una nuova trappola luminosa per la cattura di lepidotteri e altri insetti ad attività notturna. L'informatore del giovane entomologo. - Boll. Soc. Entomol. Ital. (Suppl.) 99: 1-11.
  28. Parenzan P. & Porcelli F. 2006: I macrolepidotteri italiani. Fauna Lepidopterorum Italiae (Macrolepidoptera). - Phytophaga 15: 1-1051.
  29. Price B. & Baker E. 2016: NightLife: A cheap, robust, LED based light trap for collecting aquatic insects in remote areas. - Biodiv. Data J. 4: e7648, 18 pp. Go to original source...
  30. Robinson H.S. & Robinson P.J.M. 1950: Some notes on the observed behaviour of Lepidoptera in flight in the vicinity of light sources together with a description of a light-trap designed to take entomological samples. - Entomol. Gaz. 1: 3-15.
  31. Scalercio S. 2009: On top of a Mediterranean Massif: Climate change and conservation of orophilous moths at the southern boundary of their range (Lepidoptera: Macroheterocera). - Eur. J. Entomol. 106: 231-239. Go to original source...
  32. Scalercio S. 2014a: Nuovi dati di distribuzione dei macrolepidotteri eteroceri della fauna calabrese (Insecta: Lepidoptera). - Mem. Soc. Entomol. Ital. 90: 3-59. Go to original source...
  33. Scalercio S. 2014b: Moth diversity of reforested site at Monte Cocuzzo (Calabria, Southern Italy). In Zilli A. (ed.): Lepidoptera Research in Areas with High Biodiversity Potential in Italy. Vol. 1. Natura Edizioni Scientifiche, Bologna, pp. 295-317.
  34. Scalercio S. & Infusino M. 2003: I Macrolepidotteri di fosso Scuotrapiti, lago dell'Angitola (Calabria, Italia meridionale) (Lepidoptera). - Phytophaga 13: 25-52.
  35. Scalercio S. & Infusino M. 2006: I Macrolepidotteri notturni del basso corso della Fiumara del Trionto (Calabria, Italia meridionale) (Lepidoptera). - Quad. Staz. Ecol. Civ. Mus. St. Nat. Ferrara 16: 179-202.
  36. Scalercio S., Infusino M. & Tuscano J. 2008: I macrolepidotteri notturni della faggeta di Monte Curcio, Sila Grande (Calabria, Italia meridionale) (Lepidoptera). - Quad. Staz. Ecol. Civ. Mus. St. Nat. Ferrara 18: 5-19.
  37. Scalercio S., Infusino M. & Woiwod I.P. 2009: Optimising the sampling window for moth indicator communities. - J. Insect Conserv. 13: 583-581. Go to original source...
  38. Southwood T.R.E., Henderson P.A. & Woiwod I.P. 2003: Stability and change over 67 years-the community of Heteroptera as caught in a light-trap at Rothamsted, UK. - Eur. J. Entomol. 100: 557-562. Go to original source...
  39. StatSoft Inc. 2002: Statistica for Windows. Tulsa, OK.
  40. Steiner A. & Häuser C.L. 2010: Recording insects by light-traps (Chap. 16). In Eymann J., Degreef J., Häuser C., Monje J.C., Samyn Y. & Van den Spiegel D. (eds): Manual on Field Recording Techniques and Protocols for All Taxa Biodiversity Inventories and Monitoring. Vol. 8. ABC Taxa, Rowe, part 1, i-iv + pp. 1-330; part 2, i-iv + pp. 331-653.
  41. Stukenberg N., Gebauer K. & Poehling H.M. 2015: Light emitting diode (LED)-based trapping of the greenhouse whitefly (Trialeurodes vaporariorum). - J. Appl. Entomol. 139: 268-279. Go to original source...
  42. Summerville K.S. & Crist T.O. 2004: Contrasting effects of habitat quantity and quality on moth communities in fragmented landscapes. - Ecography 27: 3-12. Go to original source...
  43. Taylor L.R. & French R.A. 1974: Effects of light-trap design and illumination on samples of moths in an English woodland. - Bull. Entomol. Res. 63: 583-594. Go to original source...
  44. Usher M.B. & Keiller S.W. 1998: The macrolepidoptera of farm woodlands: determinants of diversity and community structure. - Biodiv. Conserv. 7: 725-748. Go to original source...
  45. van Grunsven R.H., Donners M., Boekee K., Tichelaar I., Van Geffen K.G., Groenendijk D., Berendse F. & Veenendaal E.M. 2014: Spectral composition of light sources and insect phototaxis, with an evaluation of existing spectral response models. - J. Insect Conserv. 18: 225-231. Go to original source...
  46. van Langevelde F., Ettema J.A., Donners M., WallisDeVries M.F. & Groenendijk D. 2011: Effect of spectral composition of artificial light on the attraction of moths. - Biol. Conserv. 144: 2274-2281. Go to original source...
  47. White P.J.T., Glover K., Stewart J. & Rice A. 2016: The technical and performance characteristics of a low-cost, simply constructed, black light moth traps. - J. Insect Sci. 16(1): 25, 9 pp. Go to original source...
  48. Williams C.B. 1948: The Rothamsted light trap. - Proc. R. Entomol. Soc. (A) 23: 80-85.