Eur. J. Entomol. 113: 482-488, 2016 | DOI: 10.14411/eje.2016.063

The mitochondrial genome of the Mediterranean flour moth, Ephestia kuehniella (Lepidoptera: Pyralidae), and identification of invading mitochondrial sequences (numts) in the W chromosome

Katrin LÄMMERMANN1,3, Heiko VOGEL2, Walther TRAUT3,*
1 Universität zu Lübeck, Institut für Neuro- und Bioinformatik, Ratzeburger Allee 160, D-23538 Lübeck, Germany; e-mail: katrin.laemmermann@hotmail.de
2 Max Planck Institute for Chemical Ecology, Department of Entomology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany; e-mail: hvogel@ice.mpg.de
3 Universität zu Lübeck, Zentrum für Medizinische Strukturbiologie, Institut für Biologie, Ratzeburger Allee 160, D-23538 Lübeck, Germany; e-mail: traut@bio.uni-luebeck.de

The Mediterranean flour moth, Ephestia kuehniella is a widespread pest of stored products and a classical object in experimental biology. In the present study, we determined its complete mitochondrial genome sequence. The genome is circular, consists of 15,327 bp and comprises 13 protein-coding, 2 rRNA- and 22 tRNA-coding genes in an order typical for the Ditrysia clade of the order Lepidoptera. A phylogenetic study of the Lepidoptera based on complete mitochondrial genomes places E. kuehniella correctly in the family Pyralidae and supports major lepidopteran taxa as phylogenetic clades. The W chromosome of E. kuehniella is an exceptionally rich reservoir of originally mitochondrial sequences (numts). Around 0.7% of the W DNA was found to be of mitochondrial origin, 83% of the mitogenome sequence was represented between 1-11 × in the W chromosome. Phylogenetic analysis further revealed that these numts are an evolutionary recent acquisition of the W chromosome.

Keywords: Lepidoptera, Pyralidae, Ephestia kuehniella, mitogenome, Mediterranean flour moth, phylogeny, numts, W chromosome

Received: May 10, 2016; Accepted: July 18, 2016; Revised: July 18, 2016; Published online: September 15, 2016Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
LÄMMERMANN, K., VOGEL, H., & TRAUT, W. (2016). The mitochondrial genome of the Mediterranean flour moth, Ephestia kuehniella (Lepidoptera: Pyralidae), and identification of invading mitochondrial sequences (numts) in the W chromosome. Eur. J. Entomol.113(1), 2016.000. doi: 10.14411/eje.2016.063.
Download citation

References

  1. Bernt M., Braband A., Schierwater B. & Stadler P.F. 2013: Genetic aspects of mitochondrial genome evolution. - Mol. Phylogenet. Evol. 69: 328-338. Go to original source...
  2. Cao Y.-Q., Ma C., Chen J.-Y. & Yang D.-R. 2012: The complete mitochondrial genomes of two ghost moths, Thitarodes renzhiensis and Thitarodes yunnanensis: the ancestral gene arrangement in Lepidoptera. - BMC Genomics 13: 276. Go to original source...
  3. Dornseifer S. & Sczakiel G. 2013: Computational identification of biologically functional non-hairpin GC-helices in human Argonaute mRNA. - BMC Bioinform. 14: 122, 8 pp. Go to original source...
  4. Felsenstein J. 1973: Maximum-likelihood and minimum steps methods for estimating evolutionary trees from data on discrete characters. - Syst. Zool. 22: 240-249. Go to original source...
  5. Guz N., Kilincer N. & Aksoy S. 2012: Molecular characterization of Ephestia kuehniella (Lepidoptera: Pyralidae) transferrin and its response to parasitoid Venturia canescens (Hymenoptera: Ichneumonidae Gravenhorst). - Insect Mol. Biol. 21: 139-147. Go to original source...
  6. Kobelková A., Závodská R., ©auman I., Bazalová O. & Dole¾el D. 2015: Expression of clock genes period and timeless in the central nervous system of the Mediterranean flour moth, Ephestia kuehniella. - J. Biol. Rhythms 30: 104-116. Go to original source...
  7. Kristensen N.P. & Skalski A.W. 1999: Phylogeny and palaeontology. In Kristensen N.P. (ed.): Handbook of Zoology, Lepidoptera, Moths and Butterflies. Vol. 1: Evolution, Systematics, and Biogeography. Walter de Gruyter, Berlin, New York, pp 7-25.
  8. Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R. et al. 2007: Clustal W and Clustal X version 2.0. - Bioinformatics 23: 2947-2948. Go to original source...
  9. Laslett D. & Canbäck B. 2008: ARWEN, a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. - Bioinformatics 24: 172-175. Go to original source...
  10. Liu Q.-N., Chai X.-Y., Bian D.-D., Zhou C.-L. & Tang B.-P. 2016: The complete mitochondrial genome of Plodia interpunctella (Lepidoptera: Pyralidae) and comparison with other Pyraloidea insects. - Genome 59: 37-49. Go to original source...
  11. Lopez J., Yuhki N., Masuda R., Modi W. & O'Brien S.J. 1994: Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. - J. Mol. Evol. 39: 174-190.
  12. Mutanen M., Wahlberg N. & Kaila L. 2010: Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies. - Proc. R. Soc. (B) 277: 2839-2848. Go to original source...
  13. Pamilo P., Viljakainen L. & Vihavainen A. 2007: Exceptionally high density of NUMTs in the honeybee genome. - Mol. Biol. Evol. 24: 1340-1346. Go to original source...
  14. Patzel V., Steidl U., Kronenwett R., Haas R. & Sczakiel G. 1999: A theoretical approach to select effective antisense oligodeoxiribonucleotides at high statistical probability. - Nucl. Acids Res. 27: 4328-4334. Go to original source...
  15. Pytelková J., Hubert J., Lep¹ík M., ©obotník J., ©indelka R., Køí¾ková I., Horn M. & Mare¹ M. 2009: Digestive alpha-amylases of the flour moth Ephestia kuehniella - adaptation to alkaline environment and plant inhibitors. - FEBS J. 276: 3531-3546. Go to original source...
  16. Regier J.C., Mitter C., Zwick A., Bazinet A.L., Cummings M.P., Kawahara A.Y., Sohn J.-C., Zwickl D.J., Cho S., Davis D.R. et al. 2013: A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies). - PLoS ONE 8: e58568. Go to original source...
  17. Rhetsky A. & Nei M. 1993: Theoretical foundation of the minimum-evolution method of phylogenetic inference. - Mol. Biol. Evol. 10: 1073-1095.
  18. Richly E. & Leister D. 2004: NUMTs in sequenced eukaryotic genomes. - Mol. Biol. Evol. 21: 1081-1084. Go to original source...
  19. Robinson R. 1971: Lepidoptera Genetics. Pergamon Press, Oxford, 687 pp.
  20. Rohwedel J., Weichenhan D., Meier C. & Traut W. 1993: Different modes of hypervariability in (GATA)n simple sequence repeat loci. - Insect Mol. Biol. 2: 49-58. Go to original source...
  21. Sahara K., Marec F. & Traut W. 1999: TTAGG telomeric repeats in chromosomes of some insects and other arthropods. - Chromosome Res 7: 449-460. Go to original source...
  22. Saitou N. & Nei M. 1987: The neighbor-joining method: a new method for reconstructing phylogenetic trees. - Mol. Biol. Evol. 4: 406-425.
  23. Sunnucks P. & Hales D.F. 1996: Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). - Mol. Biol. Evol. 13: 510-524. Go to original source...
  24. Tamura K. & Aotsuka T. 1988: Rapid isolation method of animal mitochondrial DNA by the alkaline lysis procedure. - Biochem. Genet. 26: 815-819. Go to original source...
  25. Tamura K., Stecher G., Peterson D., Filipski A. & Kumar S. 2013: MEGA6: Molecular evolutionary genetics analysis version 6.0. - Mol. Biol. Evol. 30: 2725-2729. Go to original source...
  26. Timmermans M.J.T.N., Lees D.C. & Simonsen T.J. 2014: Towards a mitogenomic phylogeny of Lepidoptera. - Mol. Phylogenet. Evol. 79: 169-178. Go to original source...
  27. Traut W., Sahara K., Otto T.D. & Marec F. 1999: Molecular differentiation of sex chromosomes probed by comparative genomic hybridization. - Chromosoma 108: 173-180. Go to original source...
  28. Traut W., Vogel H., Glöckner G., Hartmann E. & Heckel D.G. 2013: High-throughput sequencing of a single chromosome: a moth W chromosome. - Chromosome Res. 21: 491-505. Go to original source...
  29. Wyman S.K., Jansen R.K. & Boore J.L. 2004: Automatic annotation of organellar genomes with DOGMA. - Bioinformatics 20: 3252-3255. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.