Eur. J. Entomol. 113: 337-343, 2016 | 10.14411/eje.2016.043

Northern geometrid forest pests (Lepidoptera: Geometridae) hatch at lower temperatures than their southern conspecifics: Implications of climate change

Julia FÄLT-NARDMANN1,2, Tero KLEMOLA1, Mechthild ROTH2, Kai RUOHOMÄKI1, Kari SAIKKONEN3
1 Section of Ecology, Department of Biology, University of Turku, FI-20014 Turku, Finland; e-mails: julia.falt@utu.fi, tero.klemola@utu.fi, kai.ruohomaki@utu.fi
2 Professur für Forstzoologie, Technische Universität Dresden, Tharandt, Germany; e-mail: mroth@forst.tu-dresden.de
3 Management and Production of Renewable Resources, Natural Resources Institute Finland (Luke), Turku, Finland; e-mail: kari.saikkonen@luke.fi

Climate change may facilitate shifts in the ranges and the spread of insect pests, but a warming climate may also affect herbivorous insects adversely if it disrupts the locally adapted synchrony between the phenology of insects and that of their host plant. The ability of a pest species to colonize new areas depends on its ability to adjust the timing of phenological events in its life cycle, particularly at high latitudes where there is marked seasonality in temperature and day length. Here we incubated eggs of three species of geometrid moth, Epirrita autumnata, Operophtera brumata and Erannis defoliaria from different geographical populations (E. autumnata and O. brumata from Northern Finland, E. autumnata and E. defoliaria from Southern Finland and all three species from Germany) in a climate chamber at a constant temperature to determine the relative importance of geographic origin in the timing of egg hatch measured in terms of cumulative temperature sums (degree days above 5°C, DD5); i.e. the relative importance of local adaptation versus phenotypic plasticity in the timing of egg hatch. In all three species, eggs from northern populations required a significantly lower temperature sum for hatching than eggs from southern populations, but the differences between them in temperature sum requirements varied considerably among species, with the differences being largest for the earliest hatching and northernmost species, E. autumnata, and smallest for the southern, late-hatching E. defoliaria. In addition, the difference in hatch timing between the E. autumnata eggs from Southern Finland and Germany was many times greater than the difference between the two Finnish populations of E. autumnata, despite the fact that the geographical distances between these populations is similar. We discuss how these differences in hatching time may be explained by the differences in hatch-budburst synchrony and its importance for different moth species and populations. We also briefly reflect on the significance of photoperiod, which is not affected by climate change. It is a controller that works parallel or in addition to temperature sum both for egg hatch in moths and bud burst of their host plants.

Keywords: Lepidoptera, Geometridae, Epirrita autumnata, Erannis defoliaria, Operophtera brumata, climate change, hatching, Northern Europe, phenology, photoperiod, synchrony, temperature sum

Received: October 22, 2015; Accepted: March 1, 2016; Published online: April 22, 2016

Download citation

References

  1. Ammunét T., Kaukoranta T., Saikkonen K., Repo T. & Klemola T. 2012: Invading and resident defoliators in a changing climate: cold tolerance and predictions concerning extreme winter cold as a range-limiting factor. - Ecol. Entomol. 37: 212-220. Go to original source...
  2. Bale J.S., Masters G.J., Hodkinson I.D., Awmack C., Bezemer T.M., Brown V.K., Butterfield J., Buse A., Coulson J.C. & Farrar J. 2002: Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. - Glob. Chang. Biol. 8: 1-16. Go to original source...
  3. Battisti A. & Larsson S. 2015: Climate change and insect pest distribution range. In Björkman C. & Niemelä P. (eds): Climate Change and Insect Pests. CABI, Wallingford, pp. 1-15. Go to original source...
  4. Bell J.R., Bohan D.A., Shaw E.M. & Weyman G.S. 2005: Ballooning dispersal using silk: world fauna, phylogenies, genetics and models. - Bull. Entomol. Res. 95: 69-114. Go to original source...
  5. Buse A. & Good J.E.G. 1996: Synchronization of larval emergence in winter moth (Operophtera brumata L.) and budburst in penduculate oak (Quercus robur L.) under simulated climate change. - Ecol. Entomol. 21: 335-343. Go to original source...
  6. Bylund H. 1999: Climate and the population dynamics of two insect outbreak species in the north. - Ecol. Bull. 47: 54-62.
  7. Caffarra A., Donnelly A., Chuine I. & Jones M.B. 2011a: Modelling the timing of Betula pubescens budburst: I. Temperature and photoperiod: a conceptual model. - Clim. Res. 46: 147-157. Go to original source...
  8. Caffarra A., Donnelly A. & Chuine I. 2011b: Modelling the timing of Betula pubescens budburst: II. Integrating complex effects of photoperiod into process-based models. - Clim. Res. 46: 159-170. Go to original source...
  9. Cannon R.J.C. 1998: The implications of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species. - Glob. Chang. Biol. 4: 785-796. Go to original source...
  10. Danks H.V. 1987: Insect Dormancy: An Ecological Perspective. Biological Survey of Canada (Terrestrial Artropods), Ottawa, 439 pp.
  11. Edland T. 1971: Wind dispersal of the winter moth larvae Operophtera brumata L. (Lep., Geometridae) and its relevance to control measures. - Nor. Entomol. Tidsskr. 18: 103-107.
  12. Embree D. 1966: The role of introduced parasites in the control of the winter moth in Nova Scotia. - Can. Entomol. 98: 1159-1168. Go to original source...
  13. Embree D. 1970: The diurnal and seasonal pattern of hatching of winter moth eggs, Operophtera brumata (Geometridae: Lepidoptera). - Can. Entomol. 102: 759-768. Go to original source...
  14. Gillespie D.R., Finlayson T., Tonks N.V. & Ross D.A. 1978: Occurrence of the winter moth, Operophtera brumata (Lepidoptera: Geometridae), on southern Vancouver Island, British Columbia. - Can. Entomol. 110: 223-224. Go to original source...
  15. Glavendekiæ M., 2010: Parasitoids and hyperparasitoids of Erannis defoliaria Cl. (Lepidoptera, Geometridae) in oak forests. - ©umarski list 134: 403-410.
  16. Hibbard E. & Elkinton J.S. 2015: Effect of spring and winter temperatures on winter moth (Geometridae: Lepidoptera) larval eclosion in the northeastern United States. - Environ. Entomol. 44: 798-807. Go to original source...
  17. Holliday N. 1977: Population ecology of winter moth (Operophtera brumata) on apple in relation to larval dispersal and time of bud burst. - J. Appl. Ecol. 14: 803-813. Go to original source...
  18. Jepsen J.U., Kapari L., Hagen S.B., Schott T., Vindstad O.P.L., Nilssen A.C. & Ims R.A. 2011: Rapid northwards expansion of a forest insect pest attributed to spring phenology matching with sub-Arctic birch. - Glob. Chang. Biol. 17: 2071-2083. Go to original source...
  19. Kaitaniemi P. & Ruohomäki K. 1999: Effects of autumn temperature and oviposition date on timing of larval development and risk of parasitism in a spring folivore. - Oikos 84: 435-442. Go to original source...
  20. Kerslake J. & Hartley S. 1997: Phenology of winter moth feeding on common heather: effects of source population and experimental manipulation of hatch dates. - J. Anim. Ecol. 66: 375-385. Go to original source...
  21. Kimberling D.N. & Miller J.C. 1988: Effects of temperature on larval eclosion of the winter moth, Operophtera brumata. - Entomol. Exp. Appl. 47: 249-254. Go to original source...
  22. Lodge D. 1993: Biological invasions - lessons for ecology. -Trends Ecol. Evol. 8: 133-137. Go to original source...
  23. Mjaaseth R.R., Hagen S.B., Yoccoz N.G. & Ims R.A. 2005: Phenology and abundance in relation to climatic variation in a sub-arctic insect hebivore-mountain birch system. - Oecologia 145: 53-65. Go to original source...
  24. Myking T. & Heide O.M. 1995: Dormancy release and chilling requirement of buds of latitudinal ecotypes of Betula pendula and B. pubescens. - Tree Physiol. 15: 697-704. Go to original source...
  25. Nilssen A. & Tenow O. 1990: Diapause, embryo growth and supercooling capacity of Epirrita autumnata eggs from northern Fennoscandia. - Entomol. Exp. Appl. 57: 39-55. Go to original source...
  26. Pimentel D., Lach L., Zuniga R. & Morrison D. 2000: Environmental and economic costs of nonindigenous species in the United States. - Bioscience 50: 53-65. Go to original source...
  27. Pöyry J., Luoto M., Heikkinen R.K., Kuusaari M. & Saarinen K. 2009: Species traits explain recent range shifts of Finnish butterflies. - Glob. Chang. Biol. 15: 732-743. Go to original source...
  28. Ruohomäki K., Hanhimäki S. & Haukioja E. 1993: Effects of egg size, laying order and larval density on performance of Epirrita autumnata (Lep., Geometridae). - Oikos 68: 61-66. Go to original source...
  29. Ruohomäki K., Tanhuanpää M., Ayres M.P., Kaitaniemi P., Tammaru T. & Haukioja E. 2000: Causes of cyclicity of Epirrita autumnata (Lepidoptera, Geometridae): grandiose theory and tedious practice. - Popul. Ecol. 42: 211-223. Go to original source...
  30. Saikkonen K., Taulavuori K., Hyvönen T., Gundel P.E., Hamilton C.E., Vänninen I., Nissinen A. & Helander M. 2012: Climate change-driven species' range shifts filtered by photoperiodism. - Nat. Clim. Chan. 2: 239-242. Go to original source...
  31. Speyer W. 1938: Über das Vorkommen von Lokalrassen des Kleinen Frostspanners (Cheimatobia brumata L.). - Arb. Physiol. Angew. Entomol. Berl. 5: 50-76.
  32. Tammaru T., Tanhuanpää M., Ruohomäki K. & Vanatoa A. 2001: Autumnal moth - why autumnal? - Ecol. Entomol. 26: 646-654. Go to original source...
  33. Tenow O. 1972: The outbreaks of Oporinia autumnata Bkh. and Operophthera spp. (Lep., Geometridae) in the Scandinavian mountain chain and northern Finland 1862-1968. - Zool. Bidrag Från Uppsala (Suppl.) 2: 107 pp.
  34. Tenow O., Nilssen A.C., Bylund H., Pettersson R., Battisti A., Bohn U., Caroulle F., Ciornei C., Csóka G. & Delb H. 2013: Geometrid outbreak waves travel across Europe. - J. Anim. Ecol. 82: 84-95. Go to original source...
  35. Tikkanen O. & Lyytikäinen-Saarenmaa P. 2002: Adaptation of a generalist moth, Operophtera brumata, to variable budburst phenology of host plants. - Entomol. Exp. Appl. 103: 123-133. Go to original source...
  36. Tikkanen O., Woodcock B., Watt A. & Lock K. 2006: Are polyphagous geometrid moths with flightless females adapted to budburst phenology of local host species? - Oikos 112: 83-90. Go to original source...
  37. Tomiczek C. & Perny B. 2005: Aktuelle Schäden an Bäumen im Stadtbereich. - Forstschutz Aktuell 34: 2-6.
  38. Valtonen A., Ayres M.P., Roininen H., Pöyry J. & Leinonen R. 2011: Environmental controls on the phenology of moths: predicting plasticity and constraint under climate change. - Oecologia 165: 237-248. Go to original source...
  39. Van Asch M. & Visser M.E. 2007: Phenology of forest caterpillars and their host trees: the importance of synchrony. - Annu. Rev. Entomol. 52: 37-55. Go to original source...
  40. Van Dongen S., Backeljau T., Matthysen E. & Dhondt A.A. 1997: Synchronization of hatching date with budburst of individual host trees (Quercus robur) in the winter moth (Operophtera brumata) and its fitness consequences. - J. Anim. Ecol. 66: 113-121. Go to original source...
  41. Van Doorslaer W. & Stoks R. 2005: Thermal reaction norms in two Coenagrion damselfly species: contrasting embryonic and larval life-history traits. - Freshw. Biol. 50: 1982-1990. Go to original source...
  42. Vänninen I., Worner S., Huusela-Veistola E., Tuovinen T., Nissinen A. & Saikkonen K. 2011: Recorded and potential alien invertebrate pests in Finnish agriculture and horticulture. -Agric. Food Sci. 20: 96-114. Go to original source...
  43. Visser M.E. & Holleman L.J. 2001: Warmer springs disrupt the synchrony of oak and winter moth phenology. - Proc. Biol. Sci. 268: 289-294. Go to original source...
  44. Worrall J. & Mergen F. 1967: Environmental and genetic control of dormancy in Picea abies. - Physiol. Plant. 20: 733-745. Go to original source...
  45. Wylie H.G. 1960: Some factors that affect the annual cycle of the winter moth, Operophtera brumata (L.) (Lepidoptera: Geometridae) in Western Europe. - Entomol. Exp. Appl. 3: 93-102. Go to original source...