Eur. J. Entomol. 113: 295-301, 2016 | 10.14411/eje.2016.036

Has the currently warming climate affected populations of the mountain ringlet butterfly, Erebia epiphron (Lepidoptera: Nymphalidae), in low-elevation mountains?

Martin KONVIČKA1,2, Jiří BENEŠ2, Oldřich ČÍŽEK1,3,5, Tomáš KURAS4, Irena KLEČKOVÁ2
1 Faculty of Sciences, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic; e-mails: konva333@gmail.com, sam_buh@yahoo.com
2 Institute of Entomology, Biology Centre, CAS, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic; e-mails: jiri_benes@email.cz, irena.slamova@gmail.com
3 Hutur NGO, J. Purkyne 1606, 500 02 Hradec Kralove, Czech Republic
4 Faculty of Sciences, Palacky University, Slechtitelu 11, 783 71 Olomouc, Czech Republic; e-mail: tomas.kuras@upol.cz
5 Faculty of Environment, Czech University of Life Sciences, Kamycka 961, 165 21 Praha 6 - Suchdol, Czech Republic

Climate change scenarios predict losses of cold-adapted species from insular locations, such as middle high mountains at temperate latitudes, where alpine habitats extend for a few hundred meters above the timberline. However, there are very few studies following the fates of such species in the currently warming climate. We compared transect monitoring data on an alpine butterfly, Erebia epiphron (Nymphalidae: Satyrinae) from summit elevations of two such alpine islands (above 1300 m) in the Jeseník Mts and Krkonoše Mts, Czech Republic. We asked if population density, relative total population abundance and phenology recorded in the late 1990s (past) differs that recorded early in 2010s (present) and if the patterns are consistent in the two areas, which are separated by 150 km. We found that butterfly numbers recorded per transect walk decreased between the past and the present, but relative population abundances remained unchanged. This contradictory observation is due to an extension in the adult flight period, which currently begins ca 10 days earlier and lasts for longer, resulting in the same total abundances with less prominent peaks in abundance. We interpret this development as desynchronization of annual cohort development, which might be caused by milder winters with less predictable snow cover and more variable timing of larval diapause termination. Although both the Jeseník and Krkonoše populations of E. epiphron are abundant enough to withstand such desynchronization, decreased synchronicity of annual cohort development may be detrimental for innumerable small populations of relic species in mountains across the globe.

Keywords: Lepidoptera, Nymphalidae, Erebia epiphron, alpine habitats, temperate mountains, climate warming, population structure, demography, timberline

Received: October 26, 2015; Accepted: March 1, 2016; Published online: April 5, 2016

Download citation

References

  1. Altermatt F. 2010: Tell me what you eat and I'll tell you when you fly: diet can predict phenological changes in response to climate change. - Ecol. Letters 13: 1475-1484. Go to original source...
  2. Beckage B., Osborne B., Gavin D.G., Pucko C., Siccama T. & Perkins T. 2008: A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont. - Proc. Nat. Acad. Sc. U.S.A. 105: 4197-4202. Go to original source...
  3. Beneš J., Kuras T. & Konvicka M. 2000: Assemblages of mountainous day-active Lepidoptera in the Hruby Jesenik Mountains, Czech Republic. - Biologia 55: 159-167.
  4. Bila K., Kuras T., Sipos J. & Kindlmann P. 2013: Lepidopteran species richness of alpine sites in the High Sudetes Mts: effect of area and isolation. - J. Insect Conserv. 17: 257-267. Go to original source...
  5. Boggs C.L. & Murphy D.D. 1997: Community composition in mountain ecosystems: climatic determinants of montane butterfly distribution. - Global Ecol. Biogeogr. Lett. 6: 39-48. Go to original source...
  6. Chen I.C., Hill J.K., Ohlemuller R., Roy D.B. & Thomas C.D. 2011: Rapid range shifts of species associated with high levels of climate warming. - Science 333: 1024-1026. Go to original source...
  7. Cizek O., Bakesova A., Kuras T., Benes J. & Konvicka M. 2003: Vacant niche in alpine habitat: the case of an introduced population of the butterfly Erebia epiphron in the Krkonose Mountains. - Acta Oecol. 24: 15-23. Go to original source...
  8. Diamond S.E., Frame A.M., Martin R.A. & Buckley L.B. 2011: Species' traits predict phenological responses to climate change in butterflies. - Ecology 92: 1005-1012. Go to original source...
  9. Franco A.M.A., Hill J.K., Kitschke C., Collingham Y.C., Roy D.B., Fox R., Huntley B. & Thomas C.D. 2006: Impacts of climate warming and habitat loss on extinctions at species' low-latitude range boundaries. - Global Change Biol. 12: 1545-1553. Go to original source...
  10. Halasova O., Hancarova E. & Vaskova I. 2007: [Temporal and spatial variation of selected climatic and hydrologic elements in the Krkonoše region, 1961-2000.] - Opera Corcontica 44: 171-178 [in Czech].
  11. Holzinger B., Hulber K., Camenisch M. & Grabherr G. 2008: Changes in plant species richness over the last century in the eastern Swiss Alps: elevational gradient, bedrock effects and migration rates. - Plant Ecol. 195: 179-196. Go to original source...
  12. Jeník J. 1998: Biodiversity of the Hercynian mountains of Central Europe. - Prineos 151/152: 83-99. Go to original source...
  13. Junker M., Wagner S., Gros P. & Schmitt T. 2010: Changing demography and dispersal behaviour: ecological adaptations in an alpine butterfly. - Oecologia 164: 971-980. Go to original source...
  14. Kadlec T., Vrba P., Kepka P., Schmitt T. & Konvicka M. 2010: Tracking the decline of a once-common butterfly: delayed oviposition, demography and population genetics in the Hermit, Chazara briseis. - Anim. Conserv. 13: 172-183. Go to original source...
  15. Kasak J., Mazalova M., Sipos J., Kuras T. 2015: Dwarf pine: invasive plant threatens biodiversity of alpine beatles. - Biodivers. Conserv. 24: 2399-2415. Go to original source...
  16. Kleckova I., Konvicka M. & Klecka J. 2014: Thermoregulation and microhabitat use in mountain butterflies of the genus Erebia: Importance of fine-scale habitat heterogenity. - J. Thermal Biol. 41: 50-58. Go to original source...
  17. Kleckova I., Vrba P. & Konvicka M. 2015: Quantitative evidence for spatial variation in the biennial life cycle of the mountain butterfly Erebia euryale (Lepidoptera: Nymphalidae) in the Czech Republic. - Eur. J. Entomol. 112: 114-119.
  18. Kliment Z., Matoušková M., Ledvinka O. & Královec V. 2011: Evaluation of trends in hydro-climatic long-term data series for selected mountains catchments. In Středová H., Rožnovský J. & Litschmann T. (eds): [Microclimate and Mesoclimate of Landscape Structures and Antropogenic Environments.] Český hydrometeorologický ústav, Prague, 11 pp. [in Czech].
  19. Keyghobadi N., Roland J. & Strobeck C. 2005: Genetic differentiation and gene flow among populations of the alpine butterfly, Parnassius smintheus, vary with landscape connectivity. - Mol. Ecol. 14: 1897-1909. Go to original source...
  20. Konvicka M., Benes J. & Schmitt T. 2009: Ecological limits vis à vis changing climate: relic Erebia butterflies in insular Sudetan mountains. In Habel J.C. & Assmann T. (eds): Survival on Changing Climate - Phylogeography and Conservation of Relict Species. Springer, Heidelberg, pp. 341-355.
  21. Konvicka M., Zimmermann K., Klimova M., Hula V. & Fric Z. 2012: Inverse link between density and dispersal distance in butterflies: field evidence from six co-occurring species. - Popul. Ecol. 54: 91-101. Go to original source...
  22. Konvicka M., Mihaly C.V., Rakosy L., Benes J. & Schmitt T. 2014: Survival of cold-adapted species in isolated mountains: the population genetics of the Sudeten ringlet, Erebia sudetica sudetica, in the Jesenik Mts, Czech Republic. - J. Insect Conserv. 18: 153-161. Go to original source...
  23. Kuras T., Benes J., Fric Z. & Konvicka M. 2003: Dispersal patterns of endemic alpine butterflies with contrasting population structures: Erebia epiphron and E. sudetica. - Popul. Ecol. 45: 115-123. Go to original source...
  24. Lenoir J., Gegout J.C., Marquet P.A., de Ruffray P. & Brisse H. 2008: A significant upward shift in plant species optimum elevation during the 20th century. - Science 320: 1768-1771. Go to original source...
  25. Liška J. & Skyva J. 1997: Historical and recent occurrence of Lepidoptera in mountain sites of the Giant Mountains (Czech Republic). - Biologia 52: 163-165.
  26. Matter S., Doyle A., Illerbrun K., Wheeler J. & Roland J. 2011: An assessment of direct and indirect effects of climate change for populations of the Rocky Mountain Apollo butterfly (Parnassius smintheus Doubleday). - Insect Sci. 18: 385-392. Go to original source...
  27. Merrill R.M., Gutierrez D., Lewis O.T., Gutierrez J., Diez S.B. & Wilson R.J. 2008: Combined effects of climate and biotic interactions on the elevational range of a phytophagous insect. - J. Anim. Ecol. 77: 145-155. Go to original source...
  28. Neve G. & Singer M.C. 2008: Protandry and postandry in two related butterflies: conflicting evidence about sex-specific trade-offs between adult size and emergence time. - Evol. Ecol. 22: 701-709. Go to original source...
  29. Oliver T.H. & Morecroft M.D. 2014: Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. - Climate Change 5: 317-335.
  30. Parmesan C. 2006: Ecological and evolutionary responses to recent climate change. - Annu. Rev. Ecol. Evol. Syst. 37: 637-669. Go to original source...
  31. Polic D., Fiedler K., Nell C. & Grill A. 2014: Mobility of ringlet butterflies in high-elevation alpine grassland: effects of habitat barriers, resources and age. - J. Insect Conserv. 18: 1153-1161. Go to original source...
  32. Räisänen J. & Eklund J. 2012: 21st century changes in snow climate in Northern Europe: a high-resolution view from ENSEMBLES regional climate models. - Climate Dynam. 38: 2575-2591. Go to original source...
  33. Roland J. & Matter S.F. 2007: Encroaching forests decouple alpine butterfly population dynamics. - Proc. Nat. Acad. Sci. U.S.A. 104: 13702-13704. Go to original source...
  34. Roth T., Plattner M. & Amrhein V. 2014: Plants, birds and butterflies: Short-term responses of species communities to climate warming vary by taxon and with altitude. - PLoS One 9: e82490, 9 pp. Go to original source...
  35. Rothery P. & Roy D.B. 2001: Application of generalized additive models to butterfly transect count data. - J. Appl. Statist. 28: 897-909. Go to original source...
  36. Scalercio S., Bonacci T., Mazzei A., Pizzolotto R. & Brandmayr P. 2014: Better up, worse down: bidirectional consequences of three decades of climate change on a relict population of Erebia cassioides. - J. Insect Conserv. 18: 643-650. Go to original source...
  37. Schmitt T., Cizek O. & Konvicka M. 2006: Genetics of a butterfly relocation: large, small and introduced populations of the mountain endemic Erebia epiphron silesiana. - Biol. Conserv. 123: 11-18. Go to original source...
  38. Schmitt T., Habel J.C., Rodder D. & Louy D. 2014: Effects of recent and past climatic shifts on the genetic structure of the high mountain Yellow-spotted ringlet butterfly Erebia manto (Lepidoptera, Satyrinae): a conservation problem. - Global Change Biol. 20: 2045-2061. Go to original source...
  39. Sonderegger P. 2005: Die Erebien der Schweiz (Lepidoptera: Satyrinae, Genus Erebia). W. Gassmann, Biel, 712 + 73 pp.
  40. Soulsby R.L. & Thomas J.A. 2012: Insect population curves: modelling and application to butterfly transect data. - Meth. Ecol. Evol. 3: 832-841. Go to original source...
  41. Takeuchi T. & Honda K. 2009: Early comers become owners: effect of residency experience on territorial contest dynamics in a lycaenid butterfly. - Ethology 115: 767-773. Go to original source...
  42. Thomas C.D., Cameron A., Green R.E., Bakkenes M., Beaumont L.J., Collingham Y.C., Erasmus B.F.N., de Siqueira M.F., Grainger A., Hannah L., Hughes L., Huntley B., van Jaarsveld A.S., Midgley G.F., Miles L., Ortega-Huerta M.A., Peterson A.T., Phillips O.L. & Williams S.E. 2004: Extinction risk from climate change. - Nature 427: 145-148. Go to original source...
  43. Treml V. & Banas M. 2000: Alpine timberline in the High Sudetes. - Acta Univ. Carol. Geogr. Prague 35: 83-99.
  44. Vrba P., Konvicka M. & Nedved O. 2012: Reverse altitudinal cline in cold hardiness among Erebia butterflies. - CryoLetters 33: 251-258.
  45. Vrba P., Dolek M., Nedved O., Zahradnickova H., Cerrato C. & Konvicka M. 2014a: Overwintering of the boreal butterfly Colias palaeno in Central Europe. - CryoLetters 35: 247-254.
  46. Vrba P., Nedved O. & Konvicka M. 2014b: Contrasting supercooling ability in lowland and mountain European Colias butterflies. - J. Entomol. Sci. 49: 63-69. Go to original source...
  47. Warren M.S., Hill J.K., Thomas J.A., Asher J., Fox R., Huntley B., Roy D.B., Telfer M.G., Jeffcoate S., Harding P., Jeffcoate G., Willis S.G., Greatorex-Davies J.N., Moss D. & Thomas C.D. 2001: Rapid responses of British butterflies to opposing forces of climate and habitat change. - Nature 414: 65-69. Go to original source...
  48. Wood S.N. 2011: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. - J. R. Statist. Soc. (B) 73: 3-36. Go to original source...
  49. Wilson R.J., Gutierrez D., Gutierrez J., Martinez D., Agudo R. & Monserrat V.J. 2005: Changes to the elevational limits and extent of species ranges associated with climate change. - Ecol. Lett. 8: 1138-1146. Go to original source...
  50. Wilson R.J., Gutierrez D., Gutierrez J. & Monserrat V. 2007: An elevational shift in butterfly species richness and composition accompanying recent climate change. - Global Change Biol. 13: 1873-1887. Go to original source...
  51. Wood S.N. 2011: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. - J. R. Statist. Soc. (B) 73: 3-36. Go to original source...