Eur. J. Entomol. 113: 265-269, 2016 | 10.14411/eje.2016.031

A new suite of twenty-two polymorphic microsatellite loci in the parasitic wasp, Habrobracon hebetor (Hymenoptera: Braconidae): Promising molecular tools for studying the population genetics of several beneficial braconid species

Madougou GARBA1, Anne LOISEAU2A, Laure BENOIT2B, Nathalie GAUTHIER2C,*
1 Direction Générale de la Protection des Végétaux, Ministère de l'Agriculture, BP323, Niamey, Niger; e-mail: garba_madougou@yahoo.fr
2 UMR (INRAA/ IRDC/ CiradB/ Montpellier SupAgro) Centre de Biologie pour la Gestion des Populations, 755 avenue du Campus Agropolis, CS 30016, F-34988 Montferrier-sur-Lez, France; e-mails: loiseau@supagro.inra.fr, laure.benoit@cirad.fr, nathalie.gauthier@ird.fr, nathalie.gauthier@supagro.inra.fr

Combining a biotin-enrichment protocol and 454GS-FLX titanium pyrosequencing technology, we characterised 22 polymorphic microsatellite loci from the parasitic wasp, Habrobracon hebetor (Say) (Hymenoptera: Braconidae), a cosmopolitan species commonly used in biological control against a wide range of both major lepidopterous pests of stored products and field crops in different parts of the world. Three multiplex PCR sets were optimised and characterised across 46 H. hebetor specimens from two samples collected from millet fields in Niger. Two to 11 alleles were found per locus and observed heterozygosity ranged from 0.289 to 0.826. Polymorphism was detected in both samples with a similar level of observed heterozygosity (0.482 vs. 0.502) and number of alleles (4.1 vs. 3.6). Deviation from Hardy-Weinberg equilibrium was detected at the same five loci in both samples and five or seven more loci in each sample but was not associated with heterozygote deficiencies. Even though evidence for linkage disequilibrium was found between a few alleles, these new loci segregated independently. The variability of the 22 loci will enable estimates of genetic diversity and structure patterns, as well as gene flow between H. hebetor populations at different spatial scales. Cross-species amplifications were successful among the six Bracon spp. tested and nine loci will be particularly appropriate for population genetic studies in B. brevicornis.

Keywords: Hymenoptera, Braconidae, Habrobracon hebetor, Bracon spp., biological control, parasitic wasp, microsatellite, population genetics, gene flow

Received: December 16, 2015; Accepted: January 13, 2016; Published online: March 7, 2016

Download citation

References

  1. Adarkwah C., Ulrichs C., Schaarschmidt S., Badii B.K., Addai I.K., Obeng-Ofori D. & Schöller M. 2014: Potential of Hymenopteran larval and egg parasitoids to control stored-product beetle and moth infestation in jute bags. - Bull. Entomol. Res. 104: 534-542. Go to original source...
  2. Antolin M.F., Ode P.J., Heimpel G.E., O'Hara R.B. & Strand M.R. 2003: Population structure, mating system, and sex-determining allele diversity of the parasitoid wasp Habrobracon hebetor. - Heredity 91: 373-381. Go to original source...
  3. Ba M.N., Baoua I.B., Kabore A., Amadou L., Oumarou N., Dabire-Binso C. & Sanon A. 2014: Augmentative on-farm delivery methods for the parasitoid Habrobracon hebetor Say (Hymenoptera: Braconidae) to control the millet head miner Heliocheilus albipunctella (de Joannis) (Lepidoptera: Noctuidae) in Burkina Faso and Niger - BioControl 59: 689-696. Go to original source...
  4. Chapuis M.P. & Estoup A. 2007: Microsatellite null alleles and estimation of population differentiation - Mol. Biol. Evol. 24: 621-631. Go to original source...
  5. Ghimire M.N. & Philipps T.W. 2010: Mass rearing of Habrobracon hebetor Say (Hymenoptera: Braconidae) on larvae of the Indian meal moth, Plodia interpunctella (Lepidoptera: Pyralidae): effects of host density, parasitoid density, and rearing containers. - J. Stor. Prod. Res. 46: 214-220. Go to original source...
  6. Ghimire M.N. & Philipps T.W. 2014: Oviposition and reproductive performance of Habrobracon hebetor (Hymenoptera: Braconidae) on six different pyralid host species. - Ann. Entomol. Soc. Am. 107: 809-817. Go to original source...
  7. Holleley C.E. & Geerts P. 2009: Multiplex Manager1.0: a cross-platform computer program that plans and optimizes multiplex PCR. - Biotechniques 46: 511-517. Go to original source...
  8. Kijas J.M.H., Fowler J.C.S., Garbett C.A. & Thomas M.R. 1994: Enrichment of microsatellites from the citrus genom using biotinylated oligonucleotide sequences bound to streptavidin-coated magnetic particles. - Biotechniques 16: 657-660.
  9. Malausa T., Gilles A., Meglécz E., Blanquart H., Duthoy S., Costedoat C., Dubut V., Pech N., Castagnone-Sereno P., Délye C. et al. 2011: High-throughput microsatellite isolation through 454 GS-FLX Titanium pyrosequencing of enriched DNA libraries. - Mol. Ecol. Res. 11: 638-644. Go to original source...
  10. Meglécz E., Costedoat C., Dubut V., Gilles A., Malausa T., Pech N. & Martin J.F. 2010: QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects. - Bioinformatics 26: 403-404. Go to original source...
  11. Payne W., Tapsoba H., Baoua I.B., Malick B.N., N'Diaye M. & Dabire-Binso C. 2011: On-farm biological control of the pearl millet head miner: realization of 35 years of unsteady progress in Mali, Burkina Faso and Niger. - Int. J. Agr. Sustainability 9: 186-193. Go to original source...
  12. Rozen S. & Skaletsky H.J. 2000: Primer3 on the web for general users and biologist programmers. In Krawetz S. & Misener S. (eds): Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, NJ, pp. 365-368.
  13. Rousset F. 2008: Genepop'007: a complete re-implementation of the Genepop software for Windows and Linux. - Mol. Ecol. Res. 8: 103-106. Go to original source...
  14. Van Oosterhout C., Hutchinson W.F., Wills D.P.M. & Shipley P. 2004: Microchecker: software for identifying and correcting genotyping errors in microsatellite data. - Mol. Ecol. Notes 4: 535-538. Go to original source...