Eur. J. Entomol. 112 (4): 810-817, 2015 | 10.14411/eje.2015.072

Wing morphology is linked to stable isotope composition of nitrogen and carbon in ground beetles (Coleoptera: Carabidae)

Marcin ZALEWSKI1, Dorota DUDEK-GODEAU2, Alexei V. TIUNOV3, Jean-François GODEAU4, Yutaka OKUZAKI5, Hiroshi IKEDA6, Paweł SIENKIEWICZ7, Werner ULRICH8
1 Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warsaw, Poland; e-mail: zlewek@yahoo.com
2 Al. Armii Krajowej 32/19, 05-800 Pruszków, Poland; e-mail: porrkana@wp.pl
3 Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia; e-mail: a_tiunov@mail.ru
4 Cardinal Stefan Wyszynski University, Faculty of Biology and Environmental Sciences, Dewajtis 5, 01-815 Warsaw, Poland; e-mail: jfgodeau@gmail.com
5 Field Science Center for Northern Biosphere, Hokkaido University, North 11, West 10, Sapporo, 060-0811, Japan; e-mail: yutaka@fsc.hokudai.ac.jp
6 Faculty of Agricultural and Life Science, Hirosaki University, Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan; e-mail: hikeda@hirosaki-u.ac.jp
7 Department of Entomology and Environmental Protection, Poznań University of Life Sciences, D±browskiego 159, 60-594 Poznań, Poland; e-mail: carabus@up.poznan.pl
8 Nicolaus Copernicus University in Toruń, Chair of Ecology and Biogeography, Lwowska 1, 87-100 Toruń, Poland; e-mail: ulrichw@umk.pl

As movement is expensive in terms of energy required, mobile animals might have to utilize more energy rich resources than less mobile animals. As mobile animals are possibly more effective foragers we hypothesize a positive correlation between mobility and trophic niche width. We address this link using information on the trophic level of 35 winged, wingless and wing dimorphic species of ground beetles studied on 18 lake islands and at two mainland sites in northern Poland. Trophic analyses using stable isotope values (δ15 N, δ13C) revealed that winged individuals of wing dimorphic species are characterized by broader isotopic niches than wingless individuals. Macropterous species are characterized by depleted δ13C values, which can be interpreted in terms of lipid-rich prey selection. Wing dimorphic species are characterized by higher trophic levels, as inferred from δ15 N values, than winged species. Numbers of islands colonized by particular species were not correlated with δ15 N values, δ13C values or isotopic niche width. Our results point to a relationship between diet and wing morphology in ground beetles.

Keywords: Coleoptera, Carabidae, mobility, island, niche width, stable isotopes, trophic level, wing dimorphism, δ15 N, δ13C

Received: October 24, 2014; Accepted: May 4, 2015; Prepublished online: July 8, 2015; Published: November 21, 2015

Download citation

References

  1. Begon M., Townsend C.R. & Harper J.L. 2006: Ecology. From Individuals to Ecosystems. Blackwell, Oxford, 738 pp.
  2. Billiard S. & Lenormand T. 2005: Evolution of migration under kin selection and local adaptation. - Evolution 59: 13-23. Go to original source...
  3. Boecklen W.J., Yarnes C.T., Cook B.A. & James A.C. 2011: On the use of stable isotopes in trophic ecology. - Annu. Rev. Ecol. Evol. Syst. 42: 411-440. Go to original source...
  4. Bonte D., Vandenbroecke N., Lens L. & Maelfait J.-P. 2003: Low propensity for aerialdispersal in specialist spiders from fragmented landscapes. - Proc. R. Soc. Lond. (B) 270: 1601-1607. Go to original source...
  5. Bonte D., Van Dyck H., Bullock J.M., Coulon A., Delgado M., Gibbs M., Lehouck V., Matthysen M., Mustin K., Saastamoinen M., Schtickzelle N., Stevens V.M., Vandewoestijne S., Baguette M., Barton K., Benton T.G., Chaput-Bardy A., Clobert J., Dytham C., Hovestadt T., Meier C.M., Palmer S.C.F., Turlure C. & Travis J.M.J. 2012: Cost of dispersal. - Biol. Rev. 85: 290-312. Go to original source...
  6. Bullock J.M., Kenward R.E. & Hails R. 2002: Dispersal Ecology. Blackwell, Oxford, 458 pp.
  7. Calcagno V., Massol F., Mouquet N., Jarne P. & David P. 2011: Constraints on food-chain length arising from regional metacommunity dynamics. - Proc. R. Soc. Lond. (B) 278: 3042-3049. Go to original source...
  8. Combes S.A. & Dudley R. 2009: Turbulence-driven instabilities limit insect flight performance. - Proc. Natn. Acad. Sci. U.S.A. 106: 9105-9108. Go to original source...
  9. Den Boer P.J. 1970: On the significance of dispersal power for populations of carabid beetles (Coleoptera, Carabidae). - Oecologia 4: 1-28. Go to original source...
  10. Den Boer P.J. 1990: Density limits and survival of local populations in 64 carabid species with different powers of dispersal. - J. Evol. Ecol. 3: 19-48.
  11. Den Boer P.J., Van Huizen T.H.P., Den Boer-Daanje W. & Den Bieman C.F.M. 1980: Wing polymorphism and dimorphism in ground beetles as stages in an evolutionary process. - Entomol. Gener. 6: 107-134.
  12. Desender K. 2000: Flight muscle development and dispersal in the life cycle of carabid beetles: patterns and processes. - Entomologie 70: 13-31.
  13. Dingle H. 1978: Evolution of Insect Migration and Diapause. Springer, Heidelberg, 284 pp.
  14. Dingle H., Carroll S.P. & Famula T.R. 2009: Influence of genetic architecture on contemporary local evolution in the soapberry bug, Jadera haematoloma: artificial selection on beak length. - J. Evol. Biol. 22: 2031-2040. Go to original source...
  15. Gravel D., Massol F., Canard E., Mouillot D. & Mouquet N. 2011: Trophic theory of island biogeography. - Ecol. Lett. 14: 1010-1016. Go to original source...
  16. Guerra P.A. 2011: Evaluating the life-history trade-off between dispersal capability and reproduction in wing dimorphic insects: a meta-analysis. - Biol. Rev. 86: 813-835. Go to original source...
  17. Gutierrez D. & Menéndez R. 1997: Patterns in the distribution, abundance and body size of carabid beetles (Coleoptera: Caraboidea) in relation to dispersal ability. - J. Biogeogr. 24: 903-914. Go to original source...
  18. Harwood J.D., Phillips S.W., Sunderland K.D. & Symondson W.O.C. 2001: Secondary predation: quantification of food chain errors in an aphid-spider-carabid system using monoclonal antibodies. - Mol. Ecol. 10: 2049-2058. Go to original source...
  19. Hengeveld R. 1980: Polyphagy, oligophagy and food specialization in ground beetles (Coleoptera, Carabidae). - Neth. J. Zool. 30: 564-584. Go to original source...
  20. Holt R.D. 2010: Towards a trophic island biogeography: reflections on the interface of island biogeography and food web ecology. In Losos J.B. & Ricklefts R.E (eds): The Theory of Island Biogeography Revisited. Princeton University Press, Princeton, pp. 143-185.
  21. Huberty A.F. & Denno R.F. 2006: Consequences of nitrogen and phosphorus limitation for the performance of two planthoppers with divergent life-history strategies. - Oecologia 149: 444-455. Go to original source...
  22. Hůrka K. 1996: Carabidae of the Czech and Slovak Republics. Kabourek, Zlín, 565 pp.
  23. Ikeda H., Kubota K., Kagawa A. & Sota T. 2010: Diverse diet compositions among harpaline ground beetle species revealed by mixing model analyses of stable isotope ratios. - Ecol. Entomol. 35: 307-316. Go to original source...
  24. Jackson A.L., Inger R., Parnell A. & Bearhop S. 2011: Comparing isotopic niche widths among and within communities: SIBER - Stable Isotope Bayesian Ellipses in R. - J. Anim. Ecol. 80: 595-602. Go to original source...
  25. Juen A. & Traugott M. 2006: Amplification facilitators and multiplex PCR: tools to overcome PCR-inhibition in DNA-gut content analysis of soil-living invertebrates. - Soil Biol. Biochem. 38: 1872-1879. Go to original source...
  26. Karpestam E. & Forsman A. 2013: Stable isotopes reveal dietary divergence between dispersal phenotypes in Tetrix subulata pygmy grasshoppers (Orthoptera: Tetrigidae). - Eur. J. Entomol. 110: 65-70. Go to original source...
  27. Kotze J.D., Brandmayr P., Casale A., Dauffy-Richard E., Dekoninck W., Koivula M.J., Lövei G.L., Mossakowski D., Noordijk J., Paarmann W., Pizzolotto R., Saska P., Schwerk A., Serrano J., Szyszko J., Taboada A., Turin H., Venn S., Vermeulen R. & Zetto T. 2011: Forty years of carabid beetle research in Europe - from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation. - Zookeys 100: 55-148. Go to original source...
  28. Layman C.A., Araujo M.S., Boucek R., Hammerschlag-Peyer C.M., Harrison E., Jud Z.R., Matich P., Rosenblatt A.E., Vaudo J.J., Yeager L.A., Post D.M. & Bearhop S. 2012: Applying stable isotopes to examine food-web structure: an overview of analytical tools. - Biol. Rev. 87: 545-562. Go to original source...
  29. Lindroth C.H. & Bangsholt F. 1985: The Carabidae (Coleoptera) of Fennoscandia and Denmark. Fauna Entomologica Skandinavica. Vol. 15, Part 1. E.J. Brill, Leiden, Kopenhagen, 225 pp.
  30. Martinez del Rio C., Wolf N., Carleton S.A. & Gannes L.Z. 2009: Isotopic ecology ten years after a call for more laboratory experiments. - Biol. Rev. 84: 91-111. Go to original source...
  31. McCutchan J.H., Lewis W.M., Kendall C. & McGrath C.C. 2003: Variation in trophic shift for stable isotope values of carbon, nitrogen, and sulfur. - Oikos 102: 378-390. Go to original source...
  32. Mole S. & Zera A.J. 1993: Differential allocation of resources underlies the dispersal reproduction trade-off in the wing-dimorphic cricket, Gryllus rubens. - Oecologia 93: 121-127. Go to original source...
  33. Newsome S.D., Martinez del Rio C., Bearhop S. & Phillips D.L. 2007: A niche for isotopic ecology. - Front. Ecol. Environ. 5: 429-436. Go to original source...
  34. Okuzaki Y., Tayasu I., Okuda N. & Sota T. 2009: Vertical heterogeneity of a forest floor invertebrate food web as indicated by stable-isotope analysis. - Ecol. Res. 24: 1351-1359. Go to original source...
  35. Okuzaki Y., Tayasu I., Okuda N. & Sota T. 2010: Stable isotope analysis indicates trophic differences among forest floor carabids in Japan. - Entomol. Exp. Appl. 135: 263-270. Go to original source...
  36. Parnell A.C., Inger R., Bearhop S. & Jackson A.L. 2010: Source partitioning using stable isotopes: coping with too much variation. - PLoS ONE 5(3): e9672. Go to original source...
  37. Piechnik D.A. 2013: Trophic levels colonize sequentially but effects of habitat size and quality are transient. - Acta Oecol. 47: 1-10. Go to original source...
  38. Post D.M., Layman C.A., Arrington D.A., Takimoto G., Quattrochi J. & Montana C.G. 2007: Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. - Oecologia 152: 179-189. Go to original source...
  39. Real L. & Caraco T. 1986: Risk and foraging in stochastic environments. - Annu. Rev. Ecol. Syst. 17: 371-390. Go to original source...
  40. Roff D.A. 1986: The evolution of wing dimorphism in insects. - Evolution 40: 1009-1020. Go to original source...
  41. Roff D.A. 1990: The evolution of flightlessness in insects. - Ecol. Monogr. 60: 389-421. Go to original source...
  42. Ronce O. 2007: How does it feel to be like a rolling stone? Ten questions about dispersal evolution. - Annu. Rev. Ecol. Evol.Syst. 38: 231-253. Go to original source...
  43. Sasakawa K., Ikeda H. & Kubota T. 2010: Feeding ecology of granivorous carabid larvae: a stable isotope analysis. - J. Appl. Entomol. 134: 116-122. Go to original source...
  44. Socha R. & Zemek R. 2003: Wing morph-related differences in the walking pattern and dispersal in a flightless bug, Pyrrhocoris apterus (L.) (Heteroptera). - Oikos 100: 35-43. Go to original source...
  45. Tarroux A., Ehrich D., Lecomte N., Jardine T.D., Bêty J. & Berteaux D. 2010: Sensitivity of stable isotope mixing models to variation in isotopic ratios: evaluating consequences of lipid extraction. - Meth. Ecol. Evol. 1: 231-241. Go to original source...
  46. Tillberg C.V., McCarthy D.P., Dolezal A.G. & Suarez A.V. 2006: Measuring the trophic ecology of ants using stable isotopes. - Insectes Soc. 53: 65-69. Go to original source...
  47. Ulrich W., Piwczyński M., Zaplata M. K., Winter S., Schaaf W. & Fischer A. 2014: Small-scale spatial variability in phylogenetic community structure during early plant succession depends on soil properties. - Oecologia 175: 985-995. Go to original source...
  48. Vanderklift M.A. & Ponsard S. 2003: Sources of variation in consumer-diet d15 N enrichment: a meta-analysis. - Oecologia 136: 169-182. Go to original source...
  49. Wilder S.M., Norris M., Lee R.W., Raubenheimer D. & Simpson S.J. 2013: Arthropod food webs become increasingly lipid-limited at higher trophic levels. - Ecol. Lett. 16: 895-902. Go to original source...
  50. Zalewski M. & Ulrich W. 2006: Dispersal as a key element of community structure: The case of ground beetles on lake islands. - Div. Distrib. 12: 767-775. Go to original source...
  51. Zalewski M., Dudek D., Godeau J.F. & Maruszkiewicz M. 2012: Stable isotopic research on ground beetles. Review of methods. - Baltic J. Coleopt. 12: 91-98.
  52. Zalewski M., Dudek D., Tiunov A.V., Godeau J.-F., Okuzaki Y., Ikeda H., Sienkiewicz P. & Ulrich W. 2014: High niche overlap in the stable isotope space of ground beetles. - Ann. Zool. Fenn. 51: 310-312. Go to original source...
  53. Zera A.J. & Denno R.F. 1997: Physiology and ecology of dispersal polymorphism in insects. - Annu. Rev. Entomol. 42: 207-231. Go to original source...