Eur. J. Entomol. 112 (4): 664-675, 2015 | DOI: 10.14411/eje.2015.087

Effect of temperature on the survival and development of the immature stages of Monosteira unicostata (Hemiptera: Tingidae)

Ismael SÁNCHEZ-RAMOS, Susana PASCUAL, Cristina E. FERNÁNDEZ, Aránzazu MARCOTEGUI, Manuel GONZÁLEZ-NÚÑEZ
Entomology Group, Plant Protection Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de La Coruña Km 7,5, 28040 Madrid, Spain; e-mails: ismael@inia.es; pascual@inia.es; delaguia@inia.es; marcotegui@gmail.com; mgnunez@inia.es

The poplar lace bug, Monosteira unicostata (Mulsant & Rey), is one of the most important pests of almond trees in the Mediterranean area. The developmental times and survival of the immature stages of this tingid were determined at 16, 19, 22, 25, 28, 31, 34, 35.5, 37 and 39°C, 60 ± 10% relative humidity and under a 16L : 8D photoperiod. At 16 and 39°C, 100% mortality was recorded during immature development, with the egg, first and second nymphal instars the most susceptible. The lowest mortality was recorded at 28°C (9.8%). As temperature increased, the total developmental period decreased and the shortest duration was recorded at 34°C (12.1-12.2 d). At 37°C, the developmental time was slightly longer (12.5-13.0 d). The thermal requirement for complete development, from egg to adult, was 229.2 DD. Several non-linear models were fitted to the developmental rate data recorded for the range of temperatures tested. Selection criteria indicated that the Lactin model best described the relationship between developmental rate and temperature. It predicted lower and upper thermal thresholds for the complete preimaginal period of 14.8 and 39.1°C, respectively. Models were validated by comparing their predictions for the total preimaginal period with the developmental times recorded at three different fluctuating temperature regimes. The Lactin model again best fitted the actual durations recorded. This model could be used in IPM programs for predicting the moment of occurrence of the most damaging generations of this species.

Keywords: Hemiptera, Tingidae, Monosteira unicostata, immature survival, immature development, temperature, thermal threshold

Received: March 28, 2015; Accepted: June 10, 2015; Prepublished online: August 27, 2015; Published: November 21, 2015

Download citation

References

  1. Andrewartha H.G. & Birch L.C. 1954: The Distribution and Abundance of Animals. University of Chicago Press, Chicago, IL, 782 pp.
  2. Angilletta M.J. Jr. 2006: Estimating and comparing thermal performance curves. | J. Therm. Biol. 31: 541-545. Go to original source...
  3. Aysal T. & Kivan M. 2008: Development and population growth of Stephanitis pyri (F.) (Heteroptera: Tingidae) at five temperatures. | J. Pest Sci. 81: 135-141. Go to original source...
  4. Braman S.K. & Pendley A.F. 1993: Temperature, photoperiod, and aggregation effects on development, diapause, reproduction, and survival in Corythucha cydoniae (Heteroptera: Tingidae). | J. Entomol. Sci. 28: 417-426.
  5. Braman S.K., Pendley A.F., Sparks B. & Hudson W.G. 1992: Thermal requirements for development, population trends, and parasitism of Azalea Lace Bug (Heteroptera: Tingidae). | J. Econ. Entomol. 85: 870-877. Go to original source...
  6. Bremond P. 1938: Le faux-tigre des arbres fruitiers (Monostira unicostata Muls.) au Maroc. | Rev. Pathol. Vég. Entomol. Agric. Fr. 25: 294-307.
  7. Briere J.-F., Pracros P., Le Roux A.-Y. & Pierre J.-S. 1999: A novel rate model of temperature-dependent development for arthropods. | Environ. Entomol. 28: 22-29. Go to original source...
  8. Burnham K.P. & Anderson D.R. 2002: Model Selection and Multimodel Inference. A Practical Information-Theoretic Approach. Springer, New York, NY, 516 pp.
  9. Campbell A., Frazer B.D., Gilbert N., Gutierrez A.P. & Mackauer M. 1974: Temperature requirements of some aphids and their parasites. | J. Appl. Ecol. 11: 431-438. Go to original source...
  10. Carr E.R. & Braman S.K. 2012: Phenology, abundance, plant injury and effect of temperature on the development and survival of Leptodictya plana (Hemiptera: Tingidae) on Pennisetum spp. grasses. | J. Entomol. Sci. 47: 131-138. Go to original source...
  11. Cividanes F.J., Fonseca F.S. & Galli J.C. 2004: Biologia de Leptopharsa heveae Drake & Poor (Heteroptera: Tingidae) e a relação de suas exigências térmicas com a flutuação populacional em seringueira. | Neotrop. Entomol. 33: 685-691. Go to original source...
  12. Da Silva C.A.D. 2004: Efeitos da temperatura no desenvolvimento, fecundidade e longevidade de Gargaphia torresi Lima (Hemiptera, Tingidae). | Rev. Bras. Entomol. 48: 547-552. Go to original source...
  13. De Clercq P. & Degheele D. 1992: Development and survival of Podisus maculiventris (Say) and Podisus sagitta (Fab.) (Heteroptera: Pentatomidae) at various constant temperatures. | Can. Entomol. 124: 125-133. Go to original source...
  14. Dixon A.F.G., Honìk A., Keil P., Kotela M.A.A., ©izling A.L. & Jaro¹ík V. 2009: Relationship between the minimum and maximum temperature thresholds for development in insects. | Funct. Ecol. 23: 257-264. Go to original source...
  15. García Marí F. & Ferragut F. 2002: Las Plagas Agrícolas. MV Phytoma-España SL, Valencia, 400 pp.
  16. García-Ruiz E., Marco V. & Pérez-Moreno I. 2011: Effects of variable and constant temperatures on the embryonic development and survival of a new grape pest, Xylotrechus arvicola (Coleoptera: Cerambycidae). | Environ. Entomol. 40: 939-947. Go to original source...
  17. Gómez-Menor J. 1950: La chincheta del almendro (Monostira unicostata Mulsant). | Bol. Patol. Veg. Entomol. Agric. 17: 97-110.
  18. Hansen E.M., Bentz B.J., Powell J.A., Gray D.R. & Vandygriff J.C. 2011: Prepupal diapause and instar IV developmental rates of the spruce beetle, Dendroctonus rufipennis (Coleoptera: Curculionidae, Scolytinae). | J. Insect Physiol. 57: 1347-1357. Go to original source...
  19. Hilbert D.W. & Logan J.A. 1983: Empirical model of nymphal development for the migratory grasshopper, Melanoplus sanguinipes (Orthoptera: Acrididae). | Environ. Entomol. 12: 1-5. Go to original source...
  20. Huey R.B. & Stevenson R.D. 1979: Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. | Am. Zool. 19: 357-366. Go to original source...
  21. Hurvich C.M. & Tsai C.L. 1989: Regression and time series model selection in small samples. | Biometrika 76: 297-307. Go to original source...
  22. Jaro¹ík V., Honìk A. & Dixon A.F.G. 2002: Developmental rate isomorphy in insects and mites. | Am. Nat. 160: 497-510. Go to original source...
  23. Ju R.-T., Wang F. & Li B. 2011: Effects of temperature on the development and population growth of the sycamore lace bug, Corythucha ciliata. | J. Insect Sci. 11: 16. Go to original source...
  24. Kim G.-H., Choi M.-H. & Kim J.-W. 1999: Effects of temperatures on development and reproduction of the sycamore lace bug, Corythucha ciliata (Hemiptera, Tingidae). | Kor. J. Appl. Entomol. 38: 117-121 [in Korean, English abstr.].
  25. Kontodimas D.C., Eliopoulus P.A., Stathas G.J. & Economou L.P. 2004: Comparative temperature-dependent development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) preying on Planococcus citri (Risso) (Homoptera: Pseudococcidae): evaluation of a linear and various nonlinear models using specific criteria. | Environ. Entomol. 33: 1-11. Go to original source...
  26. Kvalseth T.O. 1985: Cautionary note about R2. | Am. Stat. 39: 279-285.
  27. Lactin D.J., Holliday N.J., Johnson D.L. & Craigen R. 1995: Improved rate model of temperature-dependent development by arthropods. | Environ. Entomol. 24: 68-75. Go to original source...
  28. Liotta G. & Maniglia G. 1994: Variations in infestations of the almond tree in Sicily in the last fifty years. | Acta Hortic. 373: 277-285. Go to original source...
  29. Liu S.-S., Zhang G.-M. & Zhu J. 1995: Influence of temperature variations on rate of development in insects: analysis of case studies from entomological literature. | Ann. Entomol. Soc. Am. 88: 107-119. Go to original source...
  30. Logan J.A. 1988: Toward an expert system for development of pest simulation models. | Environ. Entomol. 17: 359-376. Go to original source...
  31. Maniglia G. 1983: Osservazioni biologiche sulla Monosteira unicostata Muls. et Rey (Rhynchota, Tingidae) in Sicilia. | Phytophaga 1: 27-40.
  32. Moleas T. 1987: Etologia, ecologia e controllo della Monosteira unicostata Muls. et Rey sul mandorlo in Puglia. | Difesa Piante 10: 469-483.
  33. Moore J.L. & Remais J.V. 2014: Developmental models for estimating ecological responses to environmental variability: structural, parametric, and experimental issues. | Acta Biotheor. 62: 69-90. Go to original source...
  34. Moutous G. & Fos A. 1973: Essais de rhizogénèse chez la feuille de vigne isolée. | Rev. Zool. Agric. Pathol. Vég. 1973(1): 27-32.
  35. Neal J.W. Jr. & Douglass L.W. 1988: Development, oviposition rate, longevity, and voltinism of Stephanitis pyrioides (Heteroptera: Tingidae), an adventive pest of azalea, at three temperatures. | Environ. Entomol. 17: 827-831. Go to original source...
  36. Neal J.W. Jr. & Douglass L.W. 1990: Seasonal dynamics and the effect of temperature in Corythucha cydoniae (Heteroptera: Tingidae). | Environ. Entomol. 19: 1299-1304. Go to original source...
  37. Neal J.W. Jr. & Schaefer C.W. 2000: Lace bugs (Tingidae). In Schaefer C.W. & Panizzi A.R. (eds): Heteroptera of Economic Importance. CRC Press, Boca Raton, FL, pp. 85-138.
  38. Ojeda Peña D. & Bravo Calderón M. 1994: Biología y control de Pleseobyrsa bicincta Monte (Hem.: Tingidae), plaga importante de palma aceitera en el Perú. | Oléagineux 49: 145-154.
  39. Péricart J. 1983: Faune de France. 69. Hémiptères Tingidae Euro-méditerranéens. Fédération Française des Société de Sciences Naturelles, Paris, 618 pp.
  40. Régnière J. & Powell J.A. 2013: Animal life cycle models (Poikilotherms). In Schwarz M.D. (ed.): Phenology: An Integrative Environmental Science. Springer, Dordrecht, pp. 295-315.
  41. Régnière J., Powell J., Bentz B. & Nealis V. 2012: Effects of temperature on development, survival and reproduction of insects: Experimental design, data analysis and modeling. | J. Insect Physiol. 58: 634-647. Go to original source...
  42. Rogers C.E. 1977: Laboratory biology of a lace bug on sunflower. | Ann. Entomol. Soc. Am. 70: 144-145. Go to original source...
  43. Sánchez-Ramos I., Álvarez-Alfageme F. & Castañera P. 2007: Development and survival of the cheese mites, Acarus farris and Tyrophagus neiswanderi (Acari: Acaridae), at constant temperatures and 90% relative humidity. | J. Stor. Prod. Res. 43: 64-72. Go to original source...
  44. Schwarz G. 1978: Estimating dimension of a model. | Ann. Stat. 6: 461-464. Go to original source...
  45. Scudder G. 2012: Monosteira unicostata (Mulsant & Rey) (Hemiptera: Tingidae) established in North America, with a key to the genera of Tingidae in Canada. | Entomol. Am. 118: 295-297. Go to original source...
  46. Shi P. & Ge F. 2010: A comparison of different thermal performance functions describing temperature-dependent development rates. | J. Therm. Biology 35: 225-231. Go to original source...
  47. Shi P., Ge F., Sun Y. & Chen C. 2011: A simple model for describing the effect of temperature on insect developmental rate. | J. Asia Pac. Entomol. 14: 15-20. Go to original source...
  48. StatPoint Technologies 2009: Statgraphics® Centurion XVI User Manual. Statpoint Technologies, Warrenton, VA, 305 pp.
  49. Stinner R.E., Butler G.D. Jr., Bacheler J.S. & Tuttle C. 1975: Simulation of temperature-dependent development in population dynamics models. | Can. Entomol. 107: 1167-1174. Go to original source...
  50. Stone J.D. & Watterson G.P. 1985: Effects of temperature on the survival and development of the morrill lace bug (Heteroptera: Tingidae) on Guayule. | Environ. Entomol. 14: 329-331. Go to original source...
  51. SYSTAT 2002: TableCurve 2D 5.01 for Windows User's Manual. SYSTAT Software Inc, Richmond, CA, 672 pp.
  52. Talhouk A.S. 1977: Contribution to the knowledge of almond pests in East Mediterranean countries. VI. The sap-sucking pests. | Z. Angew. Entomol. 83: 248-257. Go to original source...
  53. Trudgill D.L., Honek A., Li D. & Van Straalen N.M. 2005: Thermal time - concepts and utility. | Ann. Appl. Biol. 146: 1-14. Go to original source...
  54. Tsukada M. 1994: The effect of temperature on the development and longevity of the andromeda lace bug, Stephanitis takeyai (Heteroptera: Tingidae) on its two main host plants, Pieris japonica and Lyonia elliptica. | Appl. Entomol. Zool. 29: 571-576.
  55. Van Schoonhoven A., Burbano F. & Arenas R. 1975: Notes on the biology of the lace bug Gargaphia sanchezi (Hemiptera, Tingidae) a pest of beans (Phaseolus vulgaris). | Turrialba 25: 237.
  56. Vessia R. 1961: Studio morfo-biologico della Monosteira unicostata Muls. et Rey (Hemiptera - Heteroptera - Tingidae) e difesa del mandorlo. | Ann. Sper. Agrar. (N.S. Suppl.) 15: 1-48.
  57. Vidal J.P. 1939: Le faux tigre du poirier (Monosteira unicostata Mls. Hem. Heter.). | Bull. Soc. Hist. Nat. Afr. N. 30: 329-336.
  58. Vogt T.E. & McPherson J.E. 1986: Life history and laboratory rearing of Corythuca juglandis (Hemiptera: Tingidae) with descriptions of immature stages. | Great Lakes Entomol. 19: 221-233.
  59. Wagner T.L., Wu H., Sharpe P.J.H., Schoolfield R.M. & Coulson R.N. 1984a: Modeling insect development rates: a literature review and application of a biophysical model. | Ann. Entomol. Soc. Am. 77: 208-225. Go to original source...
  60. Wagner T.L., Wu H.I., Sharpe P.J.H. & Coulson R.N. 1984b: Modeling distributions of insect development time: a literature review and application of the Weibull function. | Ann. Entomol. Soc. Am. 77: 475-487. Go to original source...