Eur. J. Entomol. 112 (1): 11-19, 2015 | DOI: 10.14411/eje.2015.010

Chromosome fusion polymorphisms in the grasshopper, Dichroplus fuscus (Orthoptera: Acrididae: Melanoplinae): Insights on meiotic effects

Alberto TAFFAREL1,2,3, Claudio J. BIDAU4, Dardo A. MARTÍ1,2
1 Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical, Universidad Nacional de Misiones (IBS), Félix de Azara 1552, Piso 6°, 3300 Posadas, Misiones, Argentina; e-mails: radova@gmail.com; darmarti@gmail.com
2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917 (C1033AAJ), Ciudad Autónoma de Buenos Aires, Argentina
3 Comité Ejecutivo de Desarrollo e Innovación Tecnológica (CEDIT), Félix de Azara 1890, Piso 5º, 3300 Posadas, Misiones, Argentina
4 Paraná y Los Claveles, 3300 Posadas, Misiones, Argentina; e-mail: bidau50@gmail.com

Robertsonian fusions account for many of the changes in the evolution of the orthopteran karyotype; in their origin, a centric fusion is involved between two acro-telocentric chromosomes, forming a single bi-armed chromosome. It is usual for these rearrangements to be associated with profound changes in meiosis, such as modification in frequency and distribution of chiasmata. Dichroplus fuscus is a South American grasshopper with a wide distribution. In this work we analyzed nine populations from Misiones Province, north-eastern Argentina. This species presents a standard karyotype of 2n = 23/24 (♂/♀) with all chromosomes acro-telocentric and an X0/XX chromosomal sex determining mechanism. This standard karyotype has been modified by the occurrence of two Robertsonian fusions involving chromosomes 1/3 and 2/4; values of fusions per individual (fpi) show a significant increase in the presence of karyotypic polymorphisms towards southern populations. In individuals showing chromosomal rearrangements, we observed a clear redistribution of chiasmata towards distal positions; significant differences were noted between Robertsonian homozygotes (Ho) and heterozygotes (Ht) for chromosomes arms L1 and M3, although this was not the case between Ho and Ht for chromosome arms L2 and M4. With regard to the orientation of trivalents, values obtained for non-convergent orientation were low.

Keywords: Orthoptera, Acrididae, Dichroplus fuscus, Robertsonian fusion, grasshoppers, chiasmata, trivalents, chromosomal cline

Received: February 24, 2014; Accepted: July 14, 2014; Prepublished online: October 20, 2014; Published: January 25, 2015

Download citation

References

  1. Baker R.J. & Bickham J.W. 1986: Speciation by monobrachial centric fusions. - Proc. Natn. Acad. Sci. U.S.A. 83: 8245-8248 Go to original source...
  2. Behrstock R.A. & Sullivan P.H. 2011: Dichroplus notatus (Orthoptera: Acrididae): A grasshopper genus and species new to the United States. - J. Orthopt. Res. 20: 35-38 Go to original source...
  3. Bickham J.W. & Baker R.J. 1979: Canalization model of chromosomal evolution. In Swartz J.H. & Rollins H.G. (eds): Models and Methodologies in Evolutionary Theory. - Bull. Carnegie Mus. Nat. Hist. 13: 70-84
  4. Bidau C.J. 1990: The complex Robertsonian system of Dichroplus pratensis (Melanoplinae, Acrididae). II. Effects of the fusion polymorphisms on chiasma frequency and distribution. - Heredity 64: 145-159 Go to original source...
  5. Bidau C.J. 1993: Causes of chiasma repatterning due to centric fusions. - Braz. J. Genet. 16: 283-296
  6. Bidau C.J. & Marti D.A. 1995: Male and female meiosis in Robertsonian heterozygotes of Dichroplus pratensis (Acrididae). In Brandham P.E. & Bennett M.D. (eds): Kew Chromosome Conference IV. Royal Botanic Gardens, Kew, UK, pp. 381-396
  7. Bidau C.J. & Marti D.A. 2001: Meiosis and the Neo-XY system of Dichroplus vittatus (Melanoplinae, Acrididae): a comparison between sexes. - Genetica 110: 185-194 Go to original source...
  8. Bidau C.J. & Marti D.A. 2002: Geographic distribution of Robertsonian fusions in Dichroplus pratensis (Melanoplinae, Acrididae): the central-marginal hypothesis reanalyzed. - Cytogen. Genome Res. 96: 66-74 Go to original source...
  9. Bidau C.J. & Marti D.A. 2010: 110 years of orthopteran cytogenetics, the chromosomal evolutionary viewpoint, and Michael White s signal contributions to the field. - J. Orthopt. Res. 19: 165-182 Go to original source...
  10. Bidau C.J. & Marti D.A. 2013: The central-marginal hypothesis in acridid Orthoptera: a critique of Colmbo s (2012) article. - Eur. J. Entomol. 110: 181-185 Go to original source...
  11. Bidau C.J., Belinco C., Mirol P. & Tosto D. 1991: The complex Robertsonian system of Dichroplus pratensis (Melanoplinae, Acrididae). I. Geographic distribution of fusion polymorfisms. - Genet. Sel. Evol. 23: 353-370 Go to original source...
  12. Bidau C.J., Gimenez M.D., Palmer C.L. & Searle J.B. 2001: The effects of Robertsonian fusions on chiasma frequency and distribution in the house mouse (Mus musculus domesticus) from a hybrid zone in northern Scotland. - Heredity 87: 305-313 Go to original source...
  13. Braggio E., Ipucha C., Gimenez M.D. & Bidau C.J. 1999: Una posible zona hibrida en Ctenomys talarum de la Provincia de Buenos Aires, Argentina (Rodentia, Ctenomyidae). In: Actas del 29º Congreso de la Sociedad Argentina de Genetica. Rosario, Santa Fe
  14. Brown D.J. & O Neill R.J. 2010: Chromosomes, conflicts and epigenetics: chromosomal speciation revisited. - Annu. Rev. Genom. Hum. Genet. 11: 291-316 Go to original source...
  15. Capanna E. & Castiglia R. 2004: Chromosomes and speciation in Mus musculus domesticus. - Cytoget. Genome Res. 105: 375-384 Go to original source...
  16. Capanna E., Gropp A., Winking H., Noack G. & Civitelli M.V. 1976: Robertsonian metacentrics in the mouse. - Chromosoma 58: 341-353 Go to original source...
  17. Castillo E.R.D., Bidau C.J. & Marti D.A. 2010a: Neo-sex chromosome diversity in Neotropical melanoplinae grasshoppers (Melanoplinae, Acrididae). - Genetica 138: 775-786 Go to original source...
  18. Castillo E.R.D., Bidau C.J. & Marti D.A. 2010b: Sex- and neo-sex chromosomes in Orthoptera: a review. - J. Orthopt. Res. 19: 213-231 Go to original source...
  19. Castillo E.R.D., Taffarel A. & Marti D.A. 2011: An alternative technique for mitotic grasshopper karyotyping: Fluorescent and C-banding in Adimantus ornatissimus (Orthoptera: Acrididae). - Rev. Cienc. Tecnol. 16: 31-35
  20. Colombo P.C. 1987: Effects of centric fusions on chiasma frequency and position in Leptysma argentina (Acrididae: Orthoptera). I. Spontaneous and stable polymorphic centric fusions. - Genetica 72: 171-179 Go to original source...
  21. Colombo P.C. 2007: Effects of polymorphic Robertsonian rearrangements on the frequency and distribution of chiasmata in the wather-hyacinth grasshopper, Cornops aquaticum (Orthoptera: Acrididae). - Eur. J. Entomol. 104: 653-659 Go to original source...
  22. Colombo P.C. 2009: Metaphase I orientation of Robertsonian trivalents in the water-hyacinth grasshopper, Cornops aquaticum (Acrididae). - Genet. Mol. Biol. 32: 91-95 Go to original source...
  23. Colombo P.C. 2012: Against the central-marginal model: Three cases in chromosomally polymorphic grasshoppers (Orthoptera: Acrididae). - Eur. J. Entomol. 109: 317-324 Go to original source...
  24. Colombo P.C. 2013: Micro-evolution in grasshoppers mediated by polymorphic Robertsonian translocations. - J. Insect Sci. 13: 43 Go to original source...
  25. Dumas D. & Britton-Davidian J. 2002: Chromosomal rearrangements and evolution of recombination: comparison of chiasma distribution patterns in standard and Robertsonian populations of the house mouse. - Genetics 162: 1355-1366
  26. Eades D.C., Otte D., Cigliano M.M. & Braun H. 2014: Orthoptera Species File. Version 5.0/5.0. [February 8, 2014]. http://Orthoptera.SpeciesFile.org
  27. Eckert C.G., Samis K.E. & Lougheed C. 2008: Genetic variation across species geographical ranges: the central-marginal hypothesis and beyond. - Mol. Ecol. 17: 1170-1188 Go to original source...
  28. Hedrick P.W. 1981: The establishment of chromosomal variants. - Evolution 35: 322-332 Go to original source...
  29. Hewitt G.M. 1979: Orthoptera. Grasshoppers and crickets. In John B. (ed.): Animal Cytogenetics 3. Insecta 1. Gebruder Borntraeger, Berlin-Stuttgart, 170 pp
  30. John B. & Freeman M. 1975: Causes and consequences of Robertsonian exchange. - Chromsoma 52: 123-136 Go to original source...
  31. King M. 1993: Species Evolution. The Role of chromosome change. Cambridge University Press, Cambridge, 336 pp
  32. Levan A., Fredgra K. & Sandberg A.A. 1964: Nomenclature for centromeric position on chromosomes. - Hereditas 52: 201-220 Go to original source...
  33. Levin D.A. 2002: The Role of Chromosomal Change in Plant Evolution. Oxford Series in Ecology and Evolution. Oxford University Press, 230 pp
  34. Marti D.A. & Bidau C.J. 1995: Male and female meiosis in a natural population of Dichroplus pratensis (Acrididae) polymorphic for Robertsonian translocations: A study of chiasma frequency and distribution. - Hereditas 123: 227-235 Go to original source...
  35. McClung C. 1917: The multiple chromosomes of Hesperotettix and Mermiria (Orthoptera). - J. Morphol. 29: 519-605 Go to original source...
  36. Mesa A., Ferreira A. & Carbonell C.S. 1982: Cariologia de los Acridoideos Neotropicales: estado actual de su conocimiento y nuevas contribuciones. - Annls Soc. Entomol. Fr. 18: 507-526
  37. Mirol P.M. & Bidau J.C. 1994: Non-random patterns of non-disjuntional orientation in trivalents of multiple Robertsonian heterozygotes of Dichroplus pratensis (Acrididae). - Genetica 92: 155-164 Go to original source...
  38. Nascimento J.M. Do 2009: Analise cariotipica, heterocromatina constitutiva e frequencia de expressao das RONs em duas especies de Melanoplinae (Orthoptera: Acrididae). M.Sc. Thesis, Universidade Federal de Pernambuco, Brazil, 75 pp
  39. Parker J.S. 1987: Increased chiasma frequency as a result of chromosome rearrangement. - Heredity 58: 87-94 Go to original source...
  40. Parker J.S., Palmer R.W., Whitehorn M.A.F. & Edgar L.A. 1982: Chiasma frequency effects of structural chromosome change. - Chromosoma 85: 673-686 Go to original source...
  41. Rieseberg L.H. 2001: Chromosomal rearrangements and speciation. - Trends Ecol. Evol. 16: 351-358 Go to original source...
  42. Roberts H.R. 1941: A comparative study of the subfamilies of the Acrididae (Orthoptera) primarily on the basis of their phallic structures. - Proc. Acad. Nat. Sci. Philad. 93: 201-246
  43. Ronderos R.A., Carbonell C.S. & Mesa A. 1968: Revision de las especies del genero Dichroplus Stal del grupo elongatus. - Revta Mus. La Plata 10: 271-325
  44. Saez F.A. 1957: An extreme karyotype in an orthopteran insect. - Am. Nat. 41: 259-264 Go to original source...
  45. Schweizer D. 1980: Simultaneous fluorescent staining of R-bands and specific heterochromatic regions (DA/DAPI bands) in human chromosomes. - Cytogenet. Cell Genet. 27: 190-193 Go to original source...
  46. Sites J.W. & Moritz C. 1987: Chromosomal evolution and speciation revisited. - Syst. Zool. 36: 153-174 Go to original source...
  47. Sumner A.T. 1972: A simple technique for demonstrating centromeric heterochromatin. - Exp. Cell Res. 75: 304-306 Go to original source...
  48. White M.J.D. 1945: Animal Cytology and Evolution. The Macmillan Company, New York, 375 pp
  49. White M.J.D. 1973: Animal Cytology and Evolution. 3rd ed. Cambridge University Press, Cambridge, 961 pp
  50. White M.J.D. 1978: Modes of Speciation. W.H. Freeman, San Francisco, 455 pp