Eur. J. Entomol. 111 (5): 621-630, 2014 | DOI: 10.14411/eje.2014.077

Thermal constants of egg development in carabid beetles - variation resulting from using different estimation methods and among geographically distant European populations

Pavel SASKA1, Miroslav VLACH1, 2, Jana SCHMIDTOVÁ2, Andrey V. MATALIN3,4
1 Crop Research Institute, Drnovská 507, Praha 6 - Ruzyně, 161 06, Czech Republic; e-mail: saska@vurv.cz
2 Czech University of Life Sciences, Kamýcká 129, Praha 6 - Suchdol, 165 21, Czech Republic; e-mails: vlach.miroslav@centrum.cz; rogerfoxie@gmail.com
3 Moscow State Pedagogical University, Zoological & Ecological Department, Kibalchitcha 6, bldg. 5, Moscow 129164, Russian Federation; e-mail: a_matalin@tochka.ru
4 Russian National Research Medical University named after N.I. Pirogov, Department of Biology, Ostrovitianova 1, Moscow 117997, Russian Federation

Using equations based on the law of total effective temperatures, we estimated the thermal constants (LDT, the lower development threshold, and SET, the sum of effective temperatures) of egg development for 14 populations of 13 species of carabid beetles (eight belonging to the tribe Zabrini, one to Platynini and four to Pterostichini). We compared the estimates of the thermal constants obtained using three commonly used equations (D = SET / (T - LDT); 1 / D = a + b . T, where LDT = -a / b, and SET = 1 / b; and D . T = SET + D . LDT) and two data formats: data points for all the individuals and means for each temperature. We found that, for most species, estimates of both LDT and SET of egg development obtained using the three models were similar and that using means resulted in larger standard errors (SE) than using all data points. We provide evidence for inter-correlation among the thermal constants, showing that a decrease in the estimate of one constant is accompanied by an increase in the estimate of the other constant. For seven species for which sufficient data were available we investigated the geographical variation in their thermal constants. We found significant variation in both constants for three species, in only one in one species and in three species there was no significant variation among geographically distant populations at p < 0.05. For eight out of the nine autumn-breeding species studied, egg mortality significantly increased at high temperatures. For future studies, we recommend the use of the third method (D . T = SET + D . LDT) for estimating thermal constants for several reasons: (i) it is linear (i.e., simple to compute); (ii) the thermal constants are parameters of the equation, and therefore, their SEs are directly estimated; (iii) it allows the use of all data points (i.e., reduces the SE of the estimates of thermal constants); and (iv) the thermal requirements of different species or populations can be directly compared using ANCOVA.

Keywords: Coleoptera, Carabidae, temperature, thermal constants, law of total effective temperatures, lower development threshold, sum of effective temperatures, duration of development, development rate, mortality

Received: January 13, 2014; Accepted: March 17, 2014; Prepublished online: September 10, 2014; Published: December 10, 2014

Download citation

References

  1. Bily S. 1972: Larva of Amara (Amara) eurynota (Panzer) (Coleoptera, Carabidae) and notes on bionomy of this species. - Acta Entomol. Bohemoslov. 69: 324-329
  2. Bily S. 1975: Larvae of the genus Amara (subgenus Celia Zimm.) from central Europe (Coleoptera, Carabidae). - Studie CSAV 13: 1-74
  3. Bonato O., Ikemoto T., Shi P., Ge F., Sun Y. & Cao H. 2011: Common-intersection hypothesis of development rate lines of ectotherms within a taxon revisited. - J. Therm. Biol. 36: 422-429 Go to original source...
  4. Campbell A., Frazer B.D., Gilbert N., Gutierrez A.P. & Mackauer M. 1974: Temperature requirements of some aphids and their parasites. - J. Appl. Ecol. 11: 431-438 Go to original source...
  5. Crawley M.J. 2007: The R Book. John Wiley & Sons, Chichester, 942 pp
  6. Damos P. & Savopoulou-Soultani M. 2012: Temperature-driven models for insect development and vital thermal requirements. - Psyche Article ID 123405: 13 pp
  7. Heessen H.J.L., Wildschut M.A. & Brunsting A.M.H. 1982: Duration of the developmental stages and timing of the end of the reproductive season of Pterostichus oblongopunctatus (Fabricius) (Col., Carabidae) and Philonthus decorus (Gravenhorst) (Col., Staphylinidae). - Neth. J. Zool. 32: 49-62 Go to original source...
  8. Honek A. 1996a: Geographical variation in thermal requirements for insect development. - Eur. J. Entomol. 93: 303-312
  9. Honek A. 1996b: The relationship between thermal constants for insect development: a verification. - Acta Soc. Zool. Bohem. 60: 115-152
  10. Honek A., Martinkova Z., Saska P. & Pekar S. 2007: Size and taxonomic constraints determine the seed preferences of Carabidae (Coleoptera). - Basic Appl. Ecol. 8: 343-353 Go to original source...
  11. Hurka K. 1996: Carabidae Ceske a Slovenske republiky. [Carabidae of the Czech and Slovak Republics.] Kabourek, Zlin, 565 pp. [in Czech and English]
  12. Hurka K. & Duchac V. 1980: Larval descriptions and the breeding type of the central European species of Amara (Curtonotus) (Coleoptera, Carabidae). - Acta Entomol. Bohemoslov. 77: 258-270
  13. Hurka K. & Jarosik V. 2001: Development, breeding type and diet of members of the Amara communis species aggregate (Coleoptera: Carabidae). - Acta Soc. Zool. Bohem. 65: 17-23
  14. Ikemoto T. 2003: Possible existence of a common temperature and a common duration of development among members of a taxonomic group of arthropods that underwent speciational adaptation to temperature. - Appl. Entomol. Zool. 38: 487-492 Go to original source...
  15. Ikemoto T. & Takai K. 2000: A new linearized formula for the law of total effective temperature and the evaluation of line-fitting methods with both variables subject to error. - Environ. Entomol. 29: 671-682 Go to original source...
  16. Jarosik V., Kratochvil L., Honek A. & Dixon A.F.G. 2004: A general rule for the dependence of developmental rate on temperature in ectothermic animals. - Proc. R. Soc. Lond. (B) 271: S219-S221 Go to original source...
  17. Jarosik V., Honek A., Magarey R.D. & Skuhrovec J. 2011: Developmental database for phenology models: Related insect and mite species have similar thermal requirements. - J. Econ. Entomol. 104: 1870-1876 Go to original source...
  18. Koda K. & Nakamura H. 2012: Effects of the temperature on the development and survival of an endangered butterfly, Lycaeides argyrognomon (Lepidoptera: Lycaenidae) with estimation of otpimal and threshold temperatures using linear and nonlinear models. - Entomol. Sci. 15: 162-170 Go to original source...
  19. Kontodimas D.C., Eliopoulos P.A., Stathas G.J. & Economou L.P. 2004: Comparative temperature-dependent development of Nephus includens (Kirsch) and Nephus bisignatus (Boehman) (Coleoptera: Coccinellidae) preying on Planococcus cotri (Risso) (Homoptera: Pseudococcidae): Evaluation of a linear and various nonlinear models using specific criteria. - Environ. Entomol. 33: 1-11 Go to original source...
  20. Kuang X.-J., Parajulee M.N., Shi P.-J., Ge F. & Xue F.-S. 2012: Testing the rate isomorphy hypothesis using five statistical methods. - Insect Sci. 19: 121-128 Go to original source...
  21. Lopatina E.B., Kipyatkov V.E., Balashov S.V., Dubovikoff D.A. & Sokolova I.V. 2012a: Adaptive latitudinal variation of the duration and thermal requirements for development in the ground beetle Amara communis (Panz.) (Coleoptera, Carabidae). - Entomol. Rev. 92: 135-145 Go to original source...
  22. Lopatina E.B., Kipyatkov V.E., Balashov S.V., Dubovikoff D.A. & Sokolova I.V. 2012b: Interspecific and intraspecific variation of the duration and thermal requirements for egg development in carabid beetles (Coleoptera, Carabidae) in the North-West of Russia. - Entomol. Rev. 92: 32-45 Go to original source...
  23. Paarmann W. 1966: Vergleichende Untersuchungen ueber die Bindung zweier Carabidenarten (P. angustatus Dft. und P. oblongopunctatus F.) an ihre verschidenen Lebensraeume. - Z. Wiss. Zool. 174: 83-166
  24. R Development Core Team 2013: R: A Language and Environment for Statistical Computing. http://www.R-project.org R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org
  25. Saska P. & Honek A. 2003: Temperature and development of central European species of Amara (Coleoptera: Carabidae). - Eur. J. Entomol. 100: 509-515 Go to original source...
  26. Sokal R.R. & Rohlf F.J. 1981: Biometry. 2nd ed. W.H. Freeman, San Francisco, 859 pp
  27. Stacey D.A. & Fellowes M.D.E. 2002: Temperature and the developmental rates of thrips: Evidence for a constraint on local adaptation? - Eur. J. Entomol. 99: 399-404 Go to original source...
  28. Trudgill D.L. & Perry J.N. 1994: Thermal time and ecological strategies - a unifying hypothesis. - Ann. Appl. Biol. 125: 521-532 Go to original source...
  29. Trudgill D.L., Honek A., Li D. & van Straalen N.M. 2005: Thermal time - concepts and utility. - Ann. App. Biol. 146: 1-14 Go to original source...