Eur. J. Entomol. 111 (2): 243-250, 2014 | 10.14411/eje.2014.018

Shifted migration of the rape stem weevil Ceutorhynchus napi (Coleoptera: Curculionidae) linked to climate change

Michael EICKERMANN1, Marco BEYER1, Klaus GOERGEN1,2, Lucien HOFFMANN1, Jürgen JUNK1
1 Centre de Recherche Public - Gabriel Lippmann, Département Environnement et Agro-biotechnologies (EVA), 41, rue du Brill, L-4422 Belvaux, Luxembourg; e-mails: eickerma@lippmann.lu; beyer@lippmann.lu; hoffmann@lippmann.lu; junk@lippmann.lu
2 Meteorologisches Institut der Universität Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 176, D-53115 Bonn, Germany; e-mail: goergen@uni-bonn.de

A multi-model ensemble of 15 climate change projections from regional climate models was used to assess the impact of changes in air temperature and precipitation on the phenology of pest species in agriculture. This allowed the bandwidths of expected changes in both meteorological variables to be calculated, forming the basis for assessing and clearly communicating the uncertainties related to the model results. More specifically, we investigated the potential impact of regional climate change effects on the crop invasion of the rape stem weevil, Ceutorhynchus napi Gyllenhal (Coleoptera: Curculionidae), in Central Europe (Luxembourg). Multisite and perennial data from field observations were used to choose a biological model from the literature, based on daily maximum air temperature and daily totals of precipitation to describe the migration of C. napi. Based on this statistical relation, we were able to reproduce the observed crop invasion with a mean root mean squared error (RMSE) of 10 days. Daily values of projected maximum air temperatures and daily totals of precipitation of the multi-model ensemble were used as input data for the threshold-based biological model that projects the immigration of this pest species into oilseed rape crops (Brassica napus L.). We examined three thirty-year timespans, the near (2021 to 2050) and the far future (2069 to 2098) and compared them to a reference timespan (1961 to 1990). The projections showed a significant shift of crop invasion to an earlier onset for the near (14 days) and far future (21 days) compared to the reference period. In addition, the timespan in which the potential crop invasion will take place increased from 53 days in the reference timespan to 73 days in the near and 65 days in the far future based on the ensemble median values. It could be expected that a shifting of the immigration period will increase the risk of missing the appropriate time frame for an insecticide application. A depletion of stored nutrient resources, leading to starvation after diapause, can be eliminated for C. napi under climate change effects, as this species hibernates motionless as an adult in earth cocoons until emergence in early springtime driven by temperature.

Keywords: Coleoptera, Curculionidae, Ceutorhynchus napi, crop invasion, ensemble projection, impact study, regional climate model

Received: June 25, 2013; Accepted: November 22, 2013; Prepublished online: February 23, 2014; Published: May 5, 2014

Download citation

References

  1. Alford D.V., Nilsson C. & Ulber B. 2003: Insect pests of oilseed rape crops. In Alford D.V. (ed.): Biocontrol of Oilseed Rape Pests. Blackwell Science, Oxford, pp. 9-41 Go to original source...
  2. Araujo M.B. & New M. 2007: Ensemble forecasting of species distributions. - Trends Ecol. Evol. 22: 42-47 Go to original source...
  3. Bale J.S. & Hayward S.A.L. 2010: Insect overwintering in a changing climate. - J. Exp. Biol. 213: 980-994 Go to original source...
  4. Beaumont L.J., Pitman A.J., Poulsen M. & Hughes L. 2007: Where will species go? Incorporating new advances in climate modelling into projections of species distributions. - Glob. Change Biol. 13: 1368-1385 Go to original source...
  5. Braunert C. 2009: Verzeichnis der Ruesselkaefer Luxemburgs (Coleoptera, Curculionidae) mit Ausnahme der Borkenkaefer (Scolytinae) und Kernkaefer (Platypodinae). - Bull. Soc. Nat. Luxemb. 110: 125-142
  6. Cantelaube P. & Terres J.-M. 2005: Seasonal weather forecasts for crop yield modelling in Europe. - Tellus (A) 57: 476-487 Go to original source...
  7. Carvalho S.B., Brito J.C., Crespo E.J. & Possingham H.P. 2010: From climate change predictions to actions - conserving vulnerable animal groups in hotspots at a regional scale. - Glob. Change Biol. 16: 3257-3270 Go to original source...
  8. Christensen J.H., Kjellstroem E., Giorgi F., Lenderink G. & Rummukainen M. 2010: Weight assignment in regional climate model. - Climate Res. 44: 179-194 Go to original source...
  9. Debouzie D. & Ballanger Y. 1993: Dynamics of a Ceutorhynchus napi population in winter rape fields. - Acta Oecol. 14: 603-618
  10. Debouzie D. & Wimmer F. 1992: Models for winter rape crop invasion by the stem weevil Ceuthorhynchus napi Gyll. (Col., Curculionidae). - J. Appl. Entomol. 114: 298-304 Go to original source...
  11. Dechert G. & Ulber B. 2004: Interactions between the stem-mining weevils Ceutorhynchus napi Gyll. and Ceutorhynchus pallidactylus (Mrsh.) (Coleoptera: Curculionidae) in oilseed rape. - Agr. Forest Entomol. 6: 193-198 Go to original source...
  12. Dosse G. 1951: Der Grosse Kohltriebruessler Ceutorrhynchus napi (Gyll.). - J. Appl. Entomol. 32: 489-566 Go to original source...
  13. Fritzsche F. 1956: Untersuchungen zur Bekaempfung der Rapsschaedlinge IV. Beitraege zur Okologie und Bekaempfung des Grossen Rapsstengelruesslers (Ceutorrhynchus napi Gyll.). - Nachr. Bl. Dtsch. Pflanzenschutzd. 5: 97-105
  14. Guenthart E. 1949: Beitraege zur Lebensweise und Bekaempfung von Ceutorhynchus quadridens PANZ. und Ceutorhynchus napi Gyll. mit vielen Beobachtungen an weiteren Kohl- und Rapsschaedlingen. - Mitt. Schweiz. Entomol. Ges. 23: 441-591
  15. Harrington R., Fleming R.A., Woiwod I. 2001: Climate change impacts on insect management and conservation in temperate regions: can they be predicted? - Agr. Forest Entomol. 3: 233-240 Go to original source...
  16. Haylock M., Hofstra N., Klein A., Klok E., Jones P. & New M. 2008: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006. - Geophys. Res. Lett. 113: D20119 Go to original source...
  17. Hodgson J.A., Thomas C.D., Oliver T.H., Anderson B.J., Brereton T.M. & Crone E.E. 2011: Predicting insect phenology across space and time. - Glob. Change Biol. 17: 1289-1300 Go to original source...
  18. Johnen A., Williams I.H., Nielsson C., Klukowski Z., Luik A. & Ulber B. 2010: The proPlant decision support system: Phenological models for the major pests of oilseed rape and their key parasitoids in Europe. In Williams I.H. (ed.): Biocontrol-Based Integrated Management of Oilseed Rape Pests. Springer, Dordrecht, pp. 381-403
  19. Junk J., Eickermann M., Goergen K., Beyer M. & Hoffmann L. 2012: Ensemble-based analysis of regional climate change effects on cabbage stem weevil (Ceutorhynchus pallidactylus (Mrsh.)) in oilseed rape (Brassica napus L.). - J. Agric. Sci. 150: 191-202 Go to original source...
  20. Juroszek P. & von Tiedemann A. 2013: Plant pathogens, insect pests and weeds in a changing global climate: a review of approaches, challenges, research gaps, key studies and concepts. - J. Agric. Sci. 151: 163-188 Go to original source...
  21. Knutti R., Furrer R., Tebaldi C., Cermak J. & Meehl G.A. 2010: Challenges in combining projections from multiple climate models. - J. Climate 23: 2739-2758 Go to original source...
  22. Kocmankova E., Trnka M., Eitzinger J., Dubrovsky M., Stepanek P., Semeradova D., Balek J., Skalak P., Farda A., Juroch J. & Zalud Z. 2011: Estimating the impact of climate change on the occurrence of selected pests at a high spatial resolution: a novel approach. - J. Agric. Sci. 149: 185-195 Go to original source...
  23. Marletto V., Ventura F., Fontana G. & Tomei F. 2007: Wheat growth simulation and yield prediction with seasonal forecasts and a numerical model. - Agr. Forest Meteorol. 147: 71-79 Go to original source...
  24. May W. 2008: Potential future changes in the characteristics of daily precipitation in Europe simulated by the HIRHAM regional climate model. - Clim. Dynam. 30: 581-603 Go to original source...
  25. Netherer S. & Schopf A. 2010: Potential effects of climate change on insect herbivores in European forests - General aspects and the pine processionary moth as specific example. - Forest Ecol. Manag. 259: 831-838 Go to original source...
  26. Nilson E., Perrin C., Beersma J., Krahe P., Carambia M., de Keizer O. & Goergen K. 2010: Evaluation of data and processing procedures. In Goergen K., Beersma J., Brahmer G., Buiteveld H., Carambia M., de Keizer O., Krahe P., Nilson E., Lammersen R., Perrin C. & Volken D. (eds): Assessment of Climate Change Impacts on Discharge in the Rhine River Basin: Results of the RheinBlick2050 Project. International Commission for the Hydrology of the Rhine Basin (CHR), Lelystad, pp. 51-98
  27. Olfert O. & Weiss R.M. 2006: Impact of climate change on potential distributions and relative abundances of Oulema melanopus, Meligethes viridescens and Ceutorhynchus obstrictus in Canada. - Agric. Ecosyst. Environ. 113: 295-301 Go to original source...
  28. Piani C., Haerter J.O. & Coppola E. 2010: Statistical bias correction for daily precipitation in regional climate models over Europe. - Theor. Appl. Climatol. 99: 187-192 Go to original source...
  29. Rojas R., Feyen L., Dosio A. & Bavera D. 2011: Improving pan-European hydrological simulation of extreme events through statistical bias correction of RCM-driven climate simulation. - Hydrol. Earth Syst. Sci. 15: 2599-2620 Go to original source...
  30. Roy D.B. & Sparks T.H. 2000: Phenology of British butterflies and climate change. - Glob. Change Biol. 6: 407-416 Go to original source...
  31. Shindell D.T., Faluvegi G., Bauer S.E., Koch D., Unger N., Menon S., Miller R.L., Schmidt G.A. & Streets D.G. 2007: Climate response to projected changes in short-lived species under an A1B scenario from 2000-2050 in the GISS climate model. - J. Geophys. Res. 112: D20103 Go to original source...
  32. Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M. & Miller H.L. (eds) 2007: Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 996 pp
  33. Sparks T.M., Dennis R.L.H., Croxton P.J. & Cade M. 2007: Increased migration of Lepidoptera linked to climate change. - Eur. J. Entomol. 104: 139-143 Go to original source...
  34. van der Linden P. & Mitchell J.F.B. 2009: ENSEMBLES: Climate Change and it's Impacts: Summary of Research and Results from the ENSEMBLES Project. Met Office Hadley Centre, Exeter, 160 pp
  35. Weilin C., Zhihong J. & Laurent L. 2011: Probabilistic projections of climate change over China under the SRES A1B scenario using 28 AOGCMs. - J. Climate 24: 4741-4756
  36. Williams I.H. 2010: The major insect pests of oilseed rape in Europe and their management: an overview. In Williams I.H. (ed.): Biocontrol-Based Integrated Management of Oilseed Rape Pests. Springer, Dordrecht, pp. 1-43
  37. Ylhaeisi J.S., Tietaevaeinen H., Peltonen-Saino P., Venaelaeinen A., Eklund J., Raeisaenen J. & Jylhae K. 2010: Growing season precipitation in Finland under recent and projected climate. - Nat. Hazard Earth Sys. 10: 1563-1574 Go to original source...