Eur. J. Entomol. 110 (2): 215-220, 2013 | 10.14411/eje.2013.095

Nucleotide diversity based on csd gene of the black giant honey bee, Apis laboriosa (Hymenoptera: Apidae)

Huan WANG, Zi-Long WANG, Zhi-Jiang ZENG, Xiao-Bo WU, Wei-Yu YAN
Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, P.R. China; e-mails: HW: wanghuan111986@163.com; ZLW: wzlcqbb@126.com; ZJZ: bees1965@sina.com; XBW: wuxiaobo21@163.com; WYY: ywygood-0216@163.com

The mechanism of sex determination is common for all honeybee species (Apis spp.) by the complementary sex determi-nation (csd) gene. The csd gene has been studied in the Western honey bee (Apis mellifera L.), the Eastern honey bee (Apis cerana F.) and the giant honey bee (Apis dorsata F.), whereas no studies had been conducted on the high altitude Himalayan or black giant honey bee, Apis laboriosa Smith. In the present study, we cloned the genomic exon 6 to exon 9 region of the A. laboriosa csd gene, and identified 13 csd haplotypes. The data was analyzed and compared with the other aforementioned three honeybee species. The results showed that, as with the other three Apis species, region 3 of the csd gene contains an RS domain at the N terminal, a proline-rich domain at the C terminal, and a hypervariable region in the middle. A phylogenetic tree showed that the csd haplotypes from A. laboriosa fell into one clade with those from A. dorsata, and were separated from those from the other two species, A. mellifera and A. cerana. The network map also showed that the csd haplotypes from A. laboriosa and A. dorsata are well mixed among each other, and do not form two separate branches. Pairwise Fst analysis revealed that the value between A. laboriosa and A. dorsata was very low (0.098), confirming a close relationship to exist between them.

Keywords: Hymenoptera, Apidae, Apis laboriosa, complementary sex determination, csd haplotype, nucleotide diversity

Published: April 11, 2013

Download citation

References

  1. ARIAS M.C. & SHEPPARD W.S. 2005: Phylogenetic relationships of honey bees (Hymenoptera: Apinae: Apini) inferred from nuclear and mitochondrial DNA sequence date. - Mol. Phylogenet. Evol. 37: 25-35 Go to original source...
  2. BANDELT H.J., FORSTER P. & RÖHL A. 1999: Median-joining networks for inferring intraspecific phylogenies. - Mol. Biol. Evol. 16: 37-48 Go to original source...
  3. BEYE M., HASSELMANN M., FONDRK M.K., PAGE R.E. & OMHOLT S.W. 2003: The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. - Cell 114: 419-429 Go to original source...
  4. BLOCH G., FRANCOY T.M., WACHTEL I., PANITZ-COHEN N., FUCHS S. & MAZAR A. 2010: Industrial apiculture in the Jordan valley during Biblical times with Anatolian honeybees. - Proc. Natl. Acad Sci. USA 107: 11240-11244 Go to original source...
  5. BOS D.H., GOPURENKO D., WILLIAMS R.N. & DEWOODY J.A. 2008: Inferring population history and demography using microsatellites, mitochondrial DNA, and major histocompatibility complex (MHC) genes. - Evolution 62: 1458-1468 Go to original source...
  6. BURLAND T.G. 2000: DNASTAR's Lasergene sequence analysis software. - Methods Mol. Biol. 132: 71-91
  7. CHARLESWORTH D. 2004: Sex determination: Balancing selection in the honey bee. - Curr. Biol. 14: R568-R569 Go to original source...
  8. CHARLESWORTH D. & AWADALLA P. 1998: Flowering plant selfincompatibility: the molecular population genetics of Brassica S-loci. - Heredity 81: 1-9 Go to original source...
  9. CHO S., HUANG Z.Y., GREEN D.R., SMITH D.R. & ZHANG J. 2006: Evolution of the complementary sex-determination gene of honeybees: Balancing selection and trans-species polymorphisms. - Genome Res. 16: 1366-1375 Go to original source...
  10. COOK J.M. 1993: Sex determination in the Hymenoptera: a review of models and evidence. - Heredity 71: 421-435 Go to original source...
  11. ENGEL M.S. 1999: The taxonomy of recent and fossil honey bees (Hymenoptera: Apidae: Apis). - J. Hymenopt. Res. 8: 165-196
  12. EXCOFFIER L., LAVAL G. & SCHNEIDER S. 2005: Arlequin (version 3.0): an integrated software package for population genetics data analysis. - Evol. Bioinform. 1: 47-50
  13. GEMPE T., HASSELMANN M., SCHIOTT M., HAUSE G., OTTE M. & BEYE M. 2009: Sex determination in honeybees: two separate mechanisms induce and maintain the female pathway. - PLoS Biol. 7: e1000222 Go to original source...
  14. HASSELMANN M. & BEYE M. 2004: Signatures of selection among sex-determining alleles of the honey bee. - Proc. Natl. Acad. Sci. USA 101: 4888 Go to original source...
  15. HASSELMANN M. & BEYE M. 2006: Pronounced differences of recombination activity at the sex determination locus of the honeybee, a locus under strong balancing selection. - Genetics 174: 1469 Go to original source...
  16. HASSELMANN M., VEKEMANS X., PFLUGFELDER J., KOENIGER N., KOENIGER G., TINGEK S. & BEYE M. 2008: Evidence for convergent nucleotide evolution and high allelic turnover rates at the complementary sex determiner gene of Western and Asian honeybees. - Mol. Biol. Evol. 25: 696-708 Go to original source...
  17. HUGHES A.L. & NEI M. 1988: Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. - Nature 335: 167-170 Go to original source...
  18. IOERGER T.R., CLARK A.G. & KAO T.H. 1990: Polymorphism at the self-incompatibility locus in Solanaceae predates speciation. - Proc. Natl. Acad. Sci. USA 87: 9732-9735 Go to original source...
  19. KLEIN J. 1987: Origin of major histocompatibility complex polymorphism: the trans-species hypothesis. - Hum. Immunol. 19: 155-162 Go to original source...
  20. LIBRADO P. & ROZAS J. 2009: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. - Bioinformatics 25: 1451-1452 Go to original source...
  21. LIU Z.Y., WANG Z.L., WU X.B., YAN W.Y. & ZENG Z.J. 2011: csd alleles in the red dwarf honey bee (Apis florea, Hymenoptera: Apidae) show exceptionally high nucleotide diversity. - Insect Sci. 18: 645-651 Go to original source...
  22. LIU Z.Y., WANG Z.L., YAN W.Y., WU X.B., ZENG Z.J. & HUANG Z.Y. 2012: The sex determination gene shows no founder effect in the giant honey bee, Apis dorsata. - PloS One 7: e34436 Go to original source...
  23. LO N., GLOAG R.S., ANDERSON D.L. & OLDROYD B.P. 2010: A molecular phylogeny of the genus Apis suggests that the giant honey bee of the Philippines, A. breviligula Maa, and the plains honey bee of southern India, A. indica Fabricius, are valid species. - Syst. Entomol. 35: 226-233 Go to original source...
  24. MAY G., SHAW F., BADRANE H. & VEKEMANS X. 1999: The signature of balancing selection: fungal mating compatibility gene evolution. - Proc. Natl. Acad. Sci. USA 96: 9172-9177 Go to original source...
  25. MCEVOY M.V. & UNDERWOOD B.A. 1988: The drone and species status of the Himalayan honey bee, Apis laboriosa (Hymenoptera: Apidae). - J. Kans. Entomol. Soc. 61: 246-249
  26. MILLER K.M. & WITHLER R.E. 1997: Mhc diversity in Pacific salmon: population structure and trans-species allelism. - Hereditas 127: 83-95 Go to original source...
  27. RAFFIUDIN R. & CROZIER R.H. 2007: Phylogenetic analysis of honey bee behavioral evolution. - Mol. Phylogenet. Evol. 43: 543-552 Go to original source...
  28. RICHMAN A.D. & KOHN J.R. 1999: Self-incompatibility alleles from Physalis: implications for historical inference from balanced genetic polymorphisms. - Proc. Natl. Acad. Sci. USA 96: 168-172 Go to original source...
  29. RICHMAN A.D., UYENOYAMA M.K. & KOHN J.R. 1996: Allelic diversity and gene genealogy at the self-incompatibility locus in the Solanaceae. - Science 273: 1212-1216 Go to original source...
  30. TAKAHATA N. 1990: A simple genealogical structure of strongly balanced allelic lines and trans-species evolution of polymorphism. - Proc. Natl. Acad. Sci. USA 87: 2419-2423 Go to original source...
  31. TAKAHATA N. & NEI M. 1990: Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. - Genetics 124: 967-978
  32. TAKAHATA N., SATTA Y. & KLEIN J. 1992: Polymorphism and balancing selection at major histocompatibility complex loci. - Genetics 130: 925-938
  33. TAMURA K., DUDLEY J., NEI M. & KUMAR S. 2007: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. - Mol. Biol. Evol. 24: 1596-1599 Go to original source...
  34. THOMPSON J.D., GIBSON T.J., PLEWNIAK F., JEANMOUGIN F. & HIGGINS D.G. 1997: The CLUS-TAL_X windows interface: exible strategies for multiple sequence alignment aided by quality analysis tools. - Nucl. Acid. Res. 25: 4876-4882 Go to original source...
  35. WANG Z.L., LIU Z.Y., WU X.B., YAN W.Y. & ZENG Z.J. 2012: Polymorphism analysis of csd gene in six Apis mellifera subspecies. - Mol. Biol. Rep. 39: 3067-3071 Go to original source...
  36. WOYKE J. 1963: What happens to diploid drone larvae in a honeybee colony. - J. Apic. Res. 2: 73-75 Go to original source...
  37. WU J., SAUPE S.J. & GLASS N.L. 1998: Evidence for balancing selection operating at the het-c heterokaryon incompatibility locus in a group of filamentous fungi. - Proc. Natl. Acad. Sci. USA 95: 12398-12403 Go to original source...
  38. XIA X. & XIE Z. 2001: DAMBE: software package for data analysis in molecular biology and evolution. - J. Hered. 92: 371-373 Go to original source...
  39. YUHKI N. & O'BRIEN S.J. 1990: DNA variation of the mammalian major histocompatibility complex reflects genomic diversity and population history. - Proc. Natl. Acad. Sci. USA. 87: 836-840 Go to original source...