Eur. J. Entomol. 109 (2): 181-186, 2012 | 10.14411/eje.2012.024

Larval crowding leads to unusual reaction norms for size and time at maturity in a geometrid moth (Lepidoptera: Geometridae)

Helen VELLAU, Toomas TAMMARU
Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, EE-51014 Tartu, Estonia; e-mails: helen.vellau@ut.ee; toomas.tammaru@ut.ee

The theory of life history evolution generally predicts a negative across-environment correlation between development time and size at maturity in response to variations in environmental quality. Deviations from this pattern occur under specific circumstances. In particular, organisms may mature both early and at a small size when (1) some ultimate change (e.g. time constraint, resource exhaustion) in the environment precludes further growth, or (2) when there are predictable among-environment differences in mortality rates. The first scenario is frequently documented in insects but evidence for the second possibility is scarce. Here we report a crowding-induced plastic response resulting in a clear positive across-environment correlation between final weight and development time in a geometrid moth. The response was apparent during the entire larval period and in the last larval instar. Crowding also led to increased growth rates. As outbreaks have not been reported for this species it is unlikely that early pupation is a response to anticipated food shortage. Instead, we suggest that crowded larvae may perceive a higher risk of predation, perhaps because they are unable to distinguish conspecifics from potential predators. A possibility for a plastic increase in growth rate implies that the uncrowded larvae grow at submaximal rates, which indicates a cost of high growth rate.

Keywords: Lepidoptera, Geometridae, reaction norm, larval crowding, size and time at maturity, Ematurga atomaria

Received: February 21, 2011; Accepted: November 7, 2011; Published: April 5, 2012

Download citation

References

  1. ABRAMS P.A. & ROWE L. 1996: The effects of predation on the age and size of maturity of prey. Evolution 50: 1052-1061 Go to original source...
  2. ABRAMS P.A., LEIMAR O., NYLIN S. & WIKLUND C. 1996: The effect of flexible growth rates on optimal sizes and development times in a seasonal environment. Am. Nat. 147: 381-395 Go to original source...
  3. AGNEW P., HIDE M., SIDOBRE C. & MICHALAKIS C. 2002: A minimalist approach to the effects of density-dependent competition on insect life-history traits. Ecol. Entomol. 27: 396-402 Go to original source...
  4. BALL S.L. & BAKER R.L. 1996: Predator-induced life history changes: Antipredator behavior costs or facultative life history shifts? Ecology 77: 1116-1124 Go to original source...
  5. BARNARD D.R. & GEDEN C.J. 1993: Influence of larval density and temperature in poultry manure on development of the house fly. Environ. Entomol. 22: 971-977 Go to original source...
  6. BAUERFEIND S.S. & FISCHER K. 2005: Effects of food stress and density in different life stages on reproduction in a butterfly. Oikos 111: 514-524 Go to original source...
  7. BECKERMAN A.P., WIESKI K. & BAIRD D.J. 2007: Behavioural versus physiological mediation of life history under predation risk. Oecologia 152: 335-343 Go to original source...
  8. BERNER D. & BLANCKENHORN W.U. 2007: An ontogenetic perspective on the relationship between age and size at maturity. Funct. Ecol. 21: 505-512 Go to original source...
  9. BERRIGAN D. & KOELLA J.C. 1994: The evolution of reaction norms - simple-models for age and size at maturity. J. Evol. Biol. 7: 549-566 Go to original source...
  10. BRODMANN P.A., WILCOX C.V. & HARRISON S. 1997: Mobile parasitoids may restrict the spatial spread of an insect outbreak. J. Anim. Ecol. 66: 65-72 Go to original source...
  11. COTE I.M. & POULIN R. 1995: Parasitism and group-size in social animals - a metaanalysis. Behav. Ecol. 6: 159-165 Go to original source...
  12. CROWL T.A. & COVICH A.P. 1990: Predator-induced life-history shifts in a fresh-water snail. Science 247: 949-951 Go to original source...
  13. DMITRIEW C. 2011: The evolution of growth trajectories: what limits growth rate? Biol. Rev. 86: 97-116 Go to original source...
  14. ESPERK T. & TAMMARU T. 2010: Size compensation in moth larvae: attention to larval instars. Physiol. Entomol. 35: 222-230 Go to original source...
  15. FOSTER B.A. & STIVEN A.E. 1996: Experimental effects of density and food on growth and mortality of the southern Appalachian land gastropod, Mesodon normalis (Pilsbry). Am. Midl. Nat. 136: 300-314 Go to original source...
  16. FRIBERG M., AALBERG HAUGEN I.M, DAHLERUS J., GOTTHARD, K. & WIKLUND C. 2011: Asymmetric life-history decisionmaking in butterfly larvae. Oecologia 165: 301-310 Go to original source...
  17. GARDMARK A. & DIECKMANN U. 2006: Disparate maturation adaptations to size-dependent mortality. Proc. R. Soc. (B, Biol. Sci.) 273: 2185-2192 Go to original source...
  18. GEBHARDT M.D. & STEARNS S.C. 2002: Reaction norms for developmental time and weight at eclosion in Drosophila mercatorum. J. Evol. Biol. 1: 335-354 Go to original source...
  19. GOTTHARD K. 2000: Increased risk of predation as a cost of high growth rate: an experimental test in the speckled wood butterfly, Pararge aegeria. J. Anim. Ecol. 69: 896-902 Go to original source...
  20. GREER A.L., BRIGGS C.J. & COLLINS J.P. 2008: Testing a key assumption of host-pathogen theory: density and disease transmission. Oikos 117: 1667-1673 Go to original source...
  21. HAUKIOJA E., PAKARINEN E., NIEMELA P. & ISO-IIVARI L. 1988: Crowding-triggered phenotypic responses alleviate conse quences of crowding in Epirrita autumnata. Oecologia 75: 549-558 Go to original source...
  22. HULDEN L. 2000: Suomen Suurperhosatlas. [Atlas of Finnish Macrolepidoptera.] Suomen Perhostutkijain Seura/Luonnontieteellinen Keskusmuseo, Helsinki, 328 pp
  23. ISHII M. 1994: Factors determining larval, pupal and adult polyphenisms in the tropical butterfly, Catopsilia Pomona (Lepidoptera, Pieridae). Trans. Lepidopterol. Soc. Japan 45: 105-112
  24. JOHANSSON F. & ROWE L. 1999: Life history and behavioural responses to time constraints in a damselfly. Ecology 80: 1242-1252 Go to original source...
  25. JOHANSSON F., STOKS R., ROWE L. & DE BLOCK M. 2001: Life history plasticity in a damselfly: Effects of combined time and biotic constraints. Ecology 82: 1857-1869 Go to original source...
  26. KENWARD M.G. & ROGER J.H. 1997: Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53: 983-997 Go to original source...
  27. KLINGENBER C.P. & SPENCE J.R. 1997: On the role of body size for life-history evolution. Ecol. Entomol. 22: 55-68 Go to original source...
  28. LERAUT P. 2009: Moths of Europe. Vol. 2. Geometrid Moths. NAP Editions, Paris, 43 pp
  29. LESTER R.L., GRACH C., PENER M.P. & SIMPSON S.J. 2005: Stimuli inducing gregarious colouration and behaviour in nymphs of Schistocerea gregaria. J. Insect Physiol. 51: 737-747 Go to original source...
  30. LITTELL R.C., MILLIKEN G.A., STROUP W.W. & WOLFINGER R.D. 1996: SAS System for Mixed Models. SAS Institute, Cary, NC, 633 pp
  31. MARTY L., DIECKMANN U., ROCHET M.J. & ERNANDE B. 2011: Impact of environmental covariation in growth and mortality on evolving maturation reaction norms. Am. Nat. 117: 98-118 Go to original source...
  32. PORTER J. 1997: The Colour Identification Guide to Caterpillars of the British Isles. Penguin, London, 69 pp Go to original source...
  33. REMMEL T., TAMMARU T. & MAGI M. 2009: Seasonal mortality trends in tree-feeding insects: a field experiment. Ecol. Entomol. 34: 98-106 Go to original source...
  34. RIESSEN H.P. 1999: Predator-induced life history shifts in Daphnia: a synthesis of studies using meta-analysis. Can. J. Fish. Aquat. Sci. 56: 2487-2494 Go to original source...
  35. ROFF D.A. 1992: The Evolution of Life Histories. Chapman & Hall, London, pp. 24-56
  36. ROTHMAN L.D. 1997: Immediate and delayed effects a viral pathogen and density on tent caterpillar performance. Ecology 78: 1481-1493 Go to original source...
  37. RUDOLF V.H.W. & ROEDEL M.O. 2007: Phenotypic plasticity and optimal timing of metamorphosis under uncertain time constraints. Evol. Ecol. 21: 121-142 Go to original source...
  38. REMMEL T., DAVISON J. & TAMMARU T. 2011: Quantifying predation on folivorous insect larvae: The perspective of lifehistory evolution. Biol. J. Linn. Soc. 114: 1-18 Go to original source...
  39. RUOHOMAKI K., KLEMOLA T., KAITANIEMI P. & KAAR M. 2003: Crowding-induced responses in a geometrid moth revisited: a field experiment. Oikos 103: 489-496 Go to original source...
  40. SAS INSTITUTE INC. 1990: SAS/STAT User's Guide. Version6, 4th ed. SAS Institute Inc., Cary, NC
  41. SILLANPAA S. 2008: How do food quality and larval crowding affect performance of the autumnal moth, Epirrita autumnata. Entomol. Exp. Appl. 129: 286-294 Go to original source...
  42. SMITS A. 2002: Performance of pine looper Bupalus piniarius larvae under population build-up conditions. Entomol. Exp. Appl. 104: 117-124 Go to original source...
  43. STEARNS S.C. 1992: The Evolution of Life Histories. Oxford University Press, Oxford, pp. 123-149
  44. STEARNS S.C. & KOELLA J.C. 1986: The evolution of phenotypic plasticity in life-history traits - predictions of reaction norms for age and size at maturity. Evolution 40: 893-913 Go to original source...
  45. STILING P.D. 1988: Density-dependent processes and key factors in insect populations. J. Anim. Ecol. 57: 581-593 Go to original source...
  46. TAMMARU T. 1998: Determination of adult size in a folivorous moth: constraints at instar level? Ecol. Entomol. 23: 80-89 Go to original source...
  47. TAMMARU T. & ESPERK T. 2007: Growth allometry of immature insects: larvae do not grow exponentially. Funct. Ecol. 21: 1099-1105 Go to original source...
  48. TAMMARU T., RUOHOMAKI K. & MONTOLA M. 2000: Crowdinginduced plasticity in Epirrita autumnata (Lepidoptera: Geometridae): weak evidence of specific modifications in reaction norms. Oikos 90: 171-181 Go to original source...
  49. TAMMARU T., NYLIN S., RUOHOMAKI K. & GOTTHARD K. 2004: Compensatory responses in lepidopteran larvae: a test of growth rate maximisation. Oikos 107: 352-362 Go to original source...
  50. TAMMARU T., TANHUANPAA M., RUHOMAKI K. & VANATOA A. 2001: Autumnal moth - why autumnal? Ecol. Entomol. 26: 646-654 Go to original source...
  51. TAUBER M.J., TAUBER C.A. & MASAKI S. 1986: Seasonal Adaptations of Insects. Oxford, New York, 411 pp
  52. TEDER T., ESPERK T., REMMEL T., SANG A. & TAMMARU T. 2010: Counterintuitive size patterns in bivoltine moths: late-season larvae grow larger despite lower food quality. Oecologia 162: 117-125 Go to original source...
  53. WAHLBERG N., SNALL N., VIIDALEPP J., RUOHOMAKI K. & TAMMARU T. 2010: The evolution of female flightlessness among Ennominae of the Holarctic forest zone (Lepidoptera, Geometridae). Mol. Phylogen. Evol. 55: 929-938 Go to original source...
  54. WALL R. & BEGON M. 1987: Individual variation and the effects of population density in the grasshopper Chorthippus brunneus. Oikos 49: 15-27 Go to original source...