Eur. J. Entomol. 108 (4): 701-704, 2011 | DOI: 10.14411/eje.2011.089

Deterrence of feeding in Rhodnius prolixus (Hemiptera: Reduviidae) after treatment of antennae with a nitric oxide donor

Valeria SFARA1, Eduardo N. ZERBA1,2, Raúl A. ALZOGARAY*,1,2
1 Centro de Investigaciones de Plagas e Insecticidas (CIPEIN-CITEDEF/CONICET), J.B. de La Salle 4397, (1603) Villa Martelli, Prov. de Buenos Aires, Argentina; e-mail: ralzogaray@hotmail.com
2 Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, San Martín, Prov. de Buenos Aires, Argentina

The blood-sucking bug Rhodnius prolixus is the main vector of Chagas Disease in Colombia, Venezuela and several countries in Central America. Nitric oxide (NO) is a ubiquitous gaseous molecule present in most types of cell and participates in the olfactory pathway of insects. In this work, nitroso-acetyl-cysteine (SNAC), a nitric oxide donor, was topically applied to the antennae of fifth instar nymphs of R. prolixus. After SNAC treatment, these insects showed a dose-dependent reluctance to feed when provided with a living pigeon as the food source (ED50 = 5.2 µg/insect). However, there was no reluctance to feed when db-cGMP was applied to the antennae of nymphs. In another experiment, insects that had their antennae treated with SNAC were less attracted than the control group to a CO2 source. A possible role of NO in the olfactory pathway of R. prolixus is discussed.

Keywords: Triatominae, Rhodnius prolixus, feeding behaviour, nitric oxide

Received: February 23, 2011; Accepted: May 16, 2011; Revised: May 16, 2011; Published: October 3, 2011Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
SFARA, V., ZERBA, E.N., & ALZOGARAY, R.A. (2011). Deterrence of feeding in Rhodnius prolixus (Hemiptera: Reduviidae) after treatment of antennae with a nitric oxide donor. Eur. J. Entomol.108(4), 701-704. doi: 10.14411/eje.2011.089.
Download citation

References

  1. BARROZO R.B. & LAZZARI C.R. 2004a: The response of the blood-sucking bug Triatoma infestans to carbon dioxide and other hosts odours. Chem. Senses 29: 319-329 Go to original source...
  2. BARROZO R.B. & LAZZARI C.R. 2004b: Orientation behaviour of the blood-sucking bug Triatoma infestans to short chain fatty acids: synergistic effect of L-lactic acid and carbon dioxide. Chem. Senses 29: 833-841 Go to original source...
  3. BICKER G. 1998: NO news from insect brains. Trends Neurosci. 21: 349-355 Go to original source...
  4. BICKER G. 2001: Sources and targets of nitric oxide signalling in insects nervous systems. Cell Tissue Res. 303: 137-146 Go to original source...
  5. BOEKHOFF I., SEIFERT E., GOGGERLE S., LINDEMANN M., KRUGER B.-W. & BREER H. 1993: Pheromone-induced second messenger signalling in insect antennae. Insect Biochem. Mol. Biol. 23: 757-762 Go to original source...
  6. BREER H., KLEMM T. & BOEKHOFF I. 1992: Nitric oxide mediated formation of cyclic GMP in the olfactory system. Neuro Report 3: 1030-1032
  7. BROILLET M.-C. & FIRESTEIN S. 1997: E subunits of the olfactory cyclic nucleotide-gated channel form a nitric oxide activated Ca2+ channel. Neuron 18: 951-958. Go to original source...
  8. DAVIES S. 2000: Nitric oxide signalling in insects. Insect Biochem. Mol. Biol. 30: 1123-1138 Go to original source...
  9. DOLZER J., KRANNICH S. & STENGL M. 2008: Pharmacological investigation of protein kinase C and cGMP-dependent ion channels in cultured olfactory receptor neurons of the hawkmoth Manduca sexta. Chem. Senses 33: 803-813 Go to original source...
  10. FLECKE C., DOLZER J. & STENGL M. 2006: Perfusion with cGMP adapts the action potential response in pheromone-dependent trichoid sensilla in the moth Manduca sexta. J. Exp. Biol. 209: 3898-3912 Go to original source...
  11. FLORES G.B. & LAZZARI C.R. 1996: The role of the antennae in Triatoma infestans: orientation towards thermal sources. J. Insect Physiol. 42: 433-440 Go to original source...
  12. KRANNICH S. & STENGL M. 2008: Cyclic nucleotide-activated currents in cultured olfactory receptor neurons of the hawkmoth Manduca sexta. J. Neurophysiol. 100: 2866-2877 Go to original source...
  13. LEORA SOFTWARE 1987: POLO PC. A User's Manual for Probit and Logit Analysis. LeOra Software, Berkeley, 22 pp
  14. MATHEWS W.R. & KERR S.W. 1993: Biological activity of S-nitrosothiols: the role of nitric oxide. J. Pharmacol. Exp. Ther. 267: 1529-1537
  15. MORTON D. & NIGHORN A. 2003: MsGC-II, a receptor guanylyl cyclase isolated from the CNS of Manduca sexta that is inhibited by calcium. J. Neurochem. 84: 363-372 Go to original source...
  16. MULLER U. 1997: The nitric oxide system in insects. Progr. Neurobiol. 51: 363-381 Go to original source...
  17. NEWLAND P.L. & YATES P. 2007: Nitrergic modulation of an oviposition digging rhythm in locusts. J. Exp. Biol. 210: 4448-4456 Go to original source...
  18. NEWLAND P.L. & YATES P. 2008: Nitric oxide modulates salt and sugar responses via different signalling pathways. Chem. Senses 33: 347-356 Go to original source...
  19. NIGHORN A., SIMPSON P.J. & MORTON D.B. 2001: The novel guanylyl cyclase MsGC-I is strongly expressed in higher order neuropils in the brain of Manduca sexta. J. Exp. Biol. 204: 305-314
  20. NUNEZ J.A. 1987: Behaviour of Triatominae bugs. In Brenner R.R. & Stoka A.M. (eds): Chagas' Disease Vectors. Vol. II: Anatomic and Physiological Aspects. CRC Press, Boca Raton, pp. 1-30
  21. REDKOZUBOV A. 2000: Guanosine 3´, 5´-cyclic monophosphate reduces the response of the moth's olfactory receptor neuron to pheromone. Chem. Senses 25: 381-385 Go to original source...
  22. SCHOFIELD C.J. 1994: Triatominae. Biologia y Control. Eurocommunica Publications, Sussex, 76 pp
  23. SFARA V., ZERBA E.N. & ALZOGARAY R.A. 2008: Decrease in DEET repellency caused by nitric oxide in Rhodnius prolixus. Arch. Insect Biochem. Physiol. 67: 1-8 Go to original source...
  24. SIMPSON P.J., NIGHORN A. & MORTON D.B. 1999: Identification of a novel guanylyl cyclase that is related to receptor guanylyl cyclases, but lacks extracellular and transmembrane domains. J. Biol. Chem. 274: 4440-4446 Go to original source...
  25. STENGL M. 2010: Pheromone transduction in moths. Front. Cell. Neurosci. 4:133. doi: 10.3389/fncel.2010.0013 Go to original source...
  26. STENGL M. & ZINTL R. 1996: NADPH-diaphorase staining in the antenna of the moth Manduca sexta. J. Exp. Biol. 199: 1063-1072
  27. STENGL M., ZINTL R., DE VENTE J. & NIGHORN A. 2001: Localization of cGMP-immunoreactivity and of soluble guanylyl cyclase in antennal sensilla of the hawkmoth Manduca sexta. Cell Tissue Res. 304: 409-421 Go to original source...
  28. WASSERMAN S.L. & ITAGAKI H. 2003: The olfactory response of the antenna and maxillary palp of the fleshfly, Neobellieria bullata (Diptera: Sarcophagidae), and their sensitivity to blockage of nitric oxide synthase. J. Insect Physiol. 49: 271-280 Go to original source...
  29. WENZEL B., KUNST M., GUNTHER C., GANTER G.K., LAKESHARLAN R., ELSNER N. & HEINRICH R. 2005: Nitric oxide/cyclic guanosine monophosphate signaling in the central complex of the grasshopper brain inhibits singing behavior. J. Comp. Neurol. 488: 129-139 Go to original source...
  30. ZIEGELBERGER G., VAN DEN BERG M.J., KAISSLING K.-E., KLUMPP S. & SCHULTZ J.E. 1990: Cyclic nucleotide levels and guanylate cyclase activity in pheromone-sensitive antennae of the silkmoths Antheraea polyphemus and Bombyx mori. J. Neurosci. 10: 1217-1225
  31. ZUFALL F. & HATT H. 1991: Dual activation of a sex pheromonedependent ion channel from insect olfactory dendrites by protein kinase C activators and cyclic GMP. Proc. Natl. Acad. Sci. USA 88: 8520-8524 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.