Eur. J. Entomol. 108 (3): 461-468, 2011 | DOI: 10.14411/eje.2011.059

Seasonal constraints on the mandible allometry of Lucanus cervus (Coleoptera: Lucanidae)

Sönke HARDERSEN1, Anna L.M. MACAGNO1,2, Roberto SACCHI3, Ilaria TONI1
1 Corpo Forestale dello Stato, Centro Nazionale per lo Studio e la Conservazione della BiodiversitL Forestale "Bosco Fontana" di Verona, Strada Mantova 29, I-46045 Marmirolo, Italy; e-mails: s.hardersen@gmail.com; anna.macagno@gmail.com; ilaria_toni@vodafone.it
2 Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza UniversitL di Roma, Via Borelli 50, I-00161 Rome, Italy
3 UniversitL di Pavia, Dipartimento di Biologia Animale, Via Ferrata 9, I-27100 Pavia, Italy; e-mail: roberto.sacchi@unipv.it

In insects, allometries of exaggerated traits such as horns or mandibles are often considered species specific and constant during a season. However, given that constraints imposed by the advancing season affect the developmental processes of organisms, these allometries may not be fixed, and the switch point between morphs may vary between populations and within populations during a season. The hypothesis of such a seasonal variation in exaggerated traits was tested using the dimorphic males of the beetle Lucanus cervus. The remains of specimens killed by predators were collected along forest tracks from mid May to late August 2008 in a protected lowland forest in northern Italy. The largest beetles were collected in mid May and average size thereafter decreased. Males collected early in the season mostly had large mandibles (i.e. they belonged to the major morph). In contrast, late in the season the probability of finding males with large mandibles was very low. The threshold body size determining morph expression also shifted during the season. Early in the season, the threshold pronotum width for a 50% chance of developing into the major morph was 1.74 cm, whereas later in the season it was 1.90 cm. This shift in the threshold body size was interpreted as the effect of phenotypic plasticity in a population exposed to constraints imposed by the advancing season.

Keywords: Allometry, Coleoptera, Lucanidae, Lucanus cervus, mandibles, season, size, time constraints

Received: June 16, 2010; Accepted: March 30, 2011; Published: July 1, 2011

Download citation

References

  1. ABRAMS P.A., LEIMAR O., NYLIN S. & WIKLUND C. 1996: The effect of flexible growth rates on optimal sizes and development times in a seasonal environment. Am. Nat. 147: 381-395 Go to original source...
  2. AKAIKE H. 1974: A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19: 716-723 Go to original source...
  3. BERROW S.D., KELLY T.C. & MYERS A.A. 1992: The diet of coastal breeding hooded crows Corvus corone cornix. Ecography 15: 337-346 Go to original source...
  4. BONDURIANSKY R. 2007: The evolution of condition-dependent sexual dimorphism. Evolution 169: 9-19
  5. BURNHAM K.P. & ANDERSON D.R. 2002: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd ed. Springer, New York, 490 pp
  6. CAMPANARO A., TONI I., HARDERSEN S. & GRASSO D.A. (in press): Monitoring of Lucanus cervus (Coleoptera, Lucanidae) by means of remains of predation. Entomol. Gen
  7. CLARK J.T. 1977: Aspects of variation in the stag beetle Lucanus cervus (L.) (Coleoptera: Lucanidae). Syst. Entomol. 2: 9-16 Go to original source...
  8. COOK J.M. & BEAN D. 2006: Cryptic male dimorphism and fighting in a fig wasp. Anim. Behav. 71: 1095-1101 Go to original source...
  9. COTTER S.C., BEVERIDGE M. & SIMMONS L.W. 2008: Male morph predicts investment in larval immune function in the dung beetle, Onthophagus taurus. Behav. Ecol. 19: 331-337. Go to original source...
  10. CRAMP S. & PERRINS C.M. 1994: The Birds of the Western Palearctic, Vol. VIII - Crows to Finches. Oxford University Press, Oxford, New York, 899 pp
  11. DE BLOCK M., CAMPERO M. & STOKS R. 2008: Developmental costs of rapid growth in a damselfly. Ecol. Entomol. 33: 313-318 Go to original source...
  12. EBERHARD W.G. & GUTIERREZ E.E. 1991: Male dimorphism in beetles and earwigs and the question of developmental constraints. Evolution 45: 18-28 Go to original source...
  13. EMLEN D.J. 1996: Artificial selection on horn length-body size allometry in the horned beetle Onthophagus acuminatus (Coleoptera: Scarabaeidae). Evolution 50: 1219-1230 Go to original source...
  14. EMLEN D.J. 1997: Diet alters male horn allometry in the beetle Onthophagus acuminatus (Coleoptera: Scarabaeidae). Proc. R. Soc. Lond. (B) 264: 567-574 Go to original source...
  15. EMLEN D.J. 2001: Costs and the diversification of exaggerated animal structures. Science 291: 1534-1536 Go to original source...
  16. EMLEN D.J. & NIJHOUT H.F. 2000: The development and evolution of exaggerated morphologies in insects. Annu. Rev. Entomol. 45: 661-708 Go to original source...
  17. EMLEN D.J., HUNT J. & SIMMONS L.W. 2005: Evolution of sexual dimorphism and male dimorphism in the expression of beetle horns: phylogenetic evidence for modularity, evolutionary lability, and constraint. Am. Nat. (Suppl.) 166: S42-S68 Go to original source...
  18. GLUTZ VON BLOTZHEIM U.N. & BAUER K.M. 1993: Passeriformes (4. Teil): Corvidae - Sturnidae, RabenvGgel, StarenvGgel. In Glutz von Blotzheim U.N. (ed.): Handbuch der VGgel Mitteleuropas Band 13-III. AULA, Wiesbaden, pp. 1375-2178
  19. GOTTHARD K. 2004: Growth strategies and optimal body size in temperate Pararginii butterflies. Int. Comp. Biol. 44: 471-479 Go to original source...
  20. GRUN B. & LEISCH F. 2008: FlexMix version 2: finite mixtures with concomitant variables and varying and constant parameters. J. Stat. Soft. 28: 1-35 Go to original source...
  21. HARDERSEN S. 2000: The role of behavioural ecology of damselflies in the use of fluctuating asymmetry as a bioindicator of water pollution. Ecol. Entomol. 25: 45-53 Go to original source...
  22. HARDERSEN S. 2010: Seasonal variation of wing spot allometry in Calopteryx splendens (Odonata: Calopterygidae). Ethol. Ecol. Evol. 22: 365-373 Go to original source...
  23. HARDERSEN S., WRATTEN S.D. & FRAMPTON C.M. 1999: Does carbaryl increase fluctuating asymmetry in damselflies under field conditions? A mesocosm experiment with Xanthocnemis zealandica (Odonata: Zygoptera). J. Appl. Ecol. 36: 534-543 Go to original source...
  24. HARVEY D.J. & GANGE A.C. 2006: Size variation and mating success in the stag beetle, Lucanus cervus. Physiol. Entomol. 31: 218-226 Go to original source...
  25. HARVEY D.J., GANGE A.C., HAWES C.J. & RINK M. 2011a: Bionomics and distribution of the stag beetle, Lucanus cervus (L.) across Europe. Insect Conserv. Diver. 4: 23-38 Go to original source...
  26. HARVEY D.J., HAWES C.J., GANGE A.C., FINCH P., CHESMORE D. & FARR I. 2011b: Development of non-invasive monitoring methods for larvae and adults of the stag beetle, Lucanus cervus. Insect Conserv. Diver. 4: 4-14 Go to original source...
  27. HAZEL W.N., SMOCK R. & JOHNSON M.D. 1990: A polygenic model for the evolution and maintenance of conditional strategies. Proc. R. Soc. Lond. (B) 242: 181-187 Go to original source...
  28. HONGO Y. 2007: Evolution of male dimorphic allometry in a population of the Japanese horned beetle Trypoxylus dichotomus septentrionalis. Behav. Ecol. Sociobiol. 62: 245-253 Go to original source...
  29. HORGAN F.G. & BERROW S.D. 2004: Hooded Crow foraging from dung pads: implications for the structure of dung beetle assemblages. Biol. Environ. (B) 104: 119-124
  30. KAWANO K. 2000: Genera and allometry in the stag beetle family Lucanidae, Coleoptera. Ann. Entomol. Soc. Am. 93: 198-207 Go to original source...
  31. KNELL R.J. 2009: On the analysis of non-linear allometries. Ecol. Entomol. 34: 1-11 Go to original source...
  32. KNELL R.J., POMFRET J.C. & TOMKINS J.L. 2003: The limits of the elaboration: curved allometries reveal the constraints on mandible size in stag beetles. Proc. R. Soc. Lond. (B) 271: 523-528 Go to original source...
  33. KODRIC-BROWN A., SIBLY R.M. & BROWN J.H. 2006: The allometry of ornaments and weapons. Proc. Natl. Acad. Sci. USA 103: 8733-8738 Go to original source...
  34. KOTIAHO S. & TOMKINS J.L. 2001: The discrimination of alternative male morphologies. Behav. Ecol. 12: 553-557 Go to original source...
  35. LAGARDE F., CORBIN J., GOUJON C. & POISBLEAU M. 2005: Polymorphisme et performances au combat chez les males de Lucane cerf-volant (Lucanus cervus). Rev. Ecol. 60: 127-137
  36. MACAGNO A.L.M., PIZZO A., ROGGERO A., ROLANDO A. & PALESTRINI C. 2009: Horn polyphenism and related head shape variation in a single-horned dung beetle: Onthophagus (Palaeonthophagus) fracticornis (Preyssler, 1790) (Coleoptera: Scarabaeidae). J. Zool. Syst. Evol. Res . 47: 96-102 Go to original source...
  37. MADEWELL R. & MOCZEK A.P. 2006: Horn possession reduces maneuverability in the horn-polyphenic beetle, Onthophagus nigriventris. J. Insect Sci. 6: 10 pp Go to original source...
  38. MCLACHLAN G. & PEEL D. 2000: Finite Mixture Models (Wiley Series in Probability and Statistics). John Wiley and Sons, New York, 456 pp
  39. MOCZEK A.P. 1998: Horn polyphenism in the beetle Onthophagus taurus: larval diet quality and plasticity in parental investment determine adult body size and male horn morphology. Behav. Ecol. 9: 636-641 Go to original source...
  40. MOCZEK A.P. 2002: Allometric plasticity in a polyphenic beetle. Ecol. Entomol. 27: 58-67 Go to original source...
  41. MOCZEK A.P. 2003: The behavioral ecology of threshold evolution in a polyphenic beetle. Behav. Ecol. 14: 841-854 Go to original source...
  42. MOCZEK A.P., HUNT J., EMLEN D.J. & SIMMONS L. 2002: Threshold evolution in exotic populations of a polyphenic beetle. Evol. Ecol. Res. 4: 587-601
  43. MUGGEO V.M.R. 2003: Estimating regression models with unknown break-points. Stat. Med. 22: 3055-3071 Go to original source...
  44. NIJHOUT H.F. & EMLEN D.J. 1998: Competition among body parts in the development and evolution of insect morphology. Proc. Natl. Acad. Sci. USA 95: 3685-3689 Go to original source...
  45. OHGUSHI T. 1991: Temporal decrease in clutch size of the herbivorous lady beetle Epilachna niponica. Jap. J. Entomol. 59: 747-754
  46. OKADA K., NOMURA Y. & MIYATAKE T. 2007: Relations between allometry, male-male interactions and dispersal in a sap beetle, Librodor japonicus. Anim. Behav. 74: 749-755 Go to original source...
  47. PARZER H.F. & MOCZEK A.P. 2008: Rapid antagonistic coevolution between primary and secondary sexual characters in horned beetles. Evolution 62: 2423-2428 Go to original source...
  48. PAULIAN R. 1959: Faune de France. Coleopteres Scarabeides. 10th ed. Lechevalier, Paris, 298 pp
  49. PLAISTOW S.J. & SIVA-JOTHY M.T. 1999: The ontogenetic switch between odonate life-history stages: effects on fitness when time and food are limited . Anim. Behav. 58: 659-667 Go to original source...
  50. PLAISTOW S.J., TSUCHIDA K., TSUBAKI Y. & SETSUDA K. 2005: The effect of seasonal time constraint on development time, body size, condition, and morph determination in the horned beetle Allomyrina dichotoma L. (Coleoptera: Scarabaeidae). Ecol. Entomol. 30: 692-699 Go to original source...
  51. RINK M. & SINSCH U. 2011: Warm summers negatively affect duration of activity period and condition of adult stag beetles (Lucanus cervus). Insect Conserv. Diver. 4: 15-22. Go to original source...
  52. ROLFF J., VAN DE MEUTTER F. & STOKS R. 2004: Time constraints decouple age and size at maturity and physiological traits. Am. Nat. 164: 559-565 Go to original source...
  53. ROWE L. & LUDWIG D. 1991: Size and timing of metamorphosis in complex life histories, time constraints and variation. Ecology 72: 413-427 Go to original source...
  54. SAVALLI U.M. & FOX C.W. 1998: Sexual selection and the fitness consequences of male body size in the seed beetle Stator limbatus. Anim. Behav. 55: 473-483 Go to original source...
  55. SETSUDA K., TSUCHIDA K., WATANABE H., KAKEI Y. & YAMADA Y. 1999: Size dependent predatory pressure in the Japanese horned beetle, Allomyrina dichotoma L. (Coleoptera: Scarabaeidae). J. Ethol. 17: 73-77 Go to original source...
  56. SIMMONS L.W. & EMLEN D.J. 2006: Evolutionary trade-off between weapons and testes. Proc. Natl. Acad. Sci. USA 103: 16346-16351 Go to original source...
  57. SIMMONS L.W. & PARKER G.A. 1992: Individual variation in sperm competition success of yellow dung flies, Scathophaga stercoraria. Evolution 46: 366-375 Go to original source...
  58. SMITH R.J. 2002: Effect of larval body size on overwinter survival and emerging adult size in the burying beetle, Nicrophorus investigator. Can. J. Zool. 80: 1588-1593 Go to original source...
  59. SOKOLOVSKA N., ROWE L. & JOHANSSON F. 2000: Fitness and body size in mature odonates. Ecol. Entomol. 25: 239-248 Go to original source...
  60. SVENSSON E.I. & FRIBERG M. 2007: Selective predation on wing morphology in sympatric damselflies. Am. Nat. 7: 101-112 Go to original source...
  61. SWEENEY B.W. & VANNOTE R.L. 1978: Size variation and the distribution of hemimetabolous acquatic insects: two thermal equilibrium hypotheses. Science 200: 444-446 Go to original source...
  62. THOMAES A., KERVYN T., BECK O. & CAMMAERTS R. 2008: Distribution of Lucanus cervus (Coleoptera: Lucanidae) in Belgium: surviving in a changing landscape. Rev. Ecol. 63: 139-144
  63. TOMKINS J.L. & HAZEL W. 2007: The status of the conditional evolutionarily stable strategy. Trends Ecol. Evol. 22: 522-528 Go to original source...
  64. TOMKINS J.L., LEBAS N.R., UNRUG J. & RADWAN J. 2004: Testing the status-dependent ESS: population variation in fighter expression in the mite Sancassania berlesei. J. Evol. Biol. 17: 1377-1388 Go to original source...
  65. TSENG M. 2003: Life-history responses of a mayfly to seasonal constraints and predation risk. Ecol. Entomol. 28: 119-123 Go to original source...
  66. ZAHAVI A. 1975: Mate selection - a selection for a handicap. J. Theor. Biol. 53: 205-213 Go to original source...