Eur. J. Entomol. 108 (2): 197-203, 2011 | 10.14411/eje.2011.027

Insertion of miniature subterminal inverted repeat-like elements in diapause-regulated genes in the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae)

George D. YOCUM, Michelle J. TOUTGES, Richard L. ROEHRDANZ, Preston J. DIHLE
Red River Valley Agricultural Research Center, USDA, ARS, Biosciences Research Laboratory, 1605 Albrecht Boulevard, Fargo, ND 58102-2765, USA; e-mail: george.yocum@ars.usda.gov

Determining the genomic structure of diapause-associated transcripts (DAT) -2 and -3 led to the isolation of four novel miniature subterminal inverted repeat-like elements (MSITE): Mild-1, -2, -3 and -4. Mild-1a is inserted within the first intron of diapause protein-1. Mild-1a is 284 bp in length, has a 14 bp target site duplication and three sets of subterminal inverted repeats. The second element, Mild-2a, is inserted within the 3' terminus of Mild-1a. Mild-2a is 29 bp long with a 3 bp target site duplication and one set of subterminal inverted repeats. Using primers based on Mild-1, genomic clones were developed leading to the isolation of Mild-3a. Mild-3a shares 60% identity with Mild-1a, is 253 bp long, has a 9 bp target site duplication and has one set of subterminal inverted repeats. Mild-4a is inserted within the first intron of DAT-2 and is 227 bp in length with a 12 bp target site duplication. Mild-4a appears to be an intermediate form between a miniature inverted repeat transposable element (MITE) and a MSITE because the 5' inverted repeat is terminal (i.e., adjacent to the target site duplication) as in MITEs, but the 3' inverted repeat is separated (in this case, by 33 bp) from the 3' target site duplication as in MSITEs. The target site duplications of Mild-1, -3 and -4 families share a common conserved core of AATTT. All of the transposable elements are AT rich and are able to form hairpin structures. Within the promoter region of DAT-3 is a 163 bp sequence (Mild-1b) that shares 77% identity to the 3' terminus of Mild-1a. Mild-4a has identity to 25 and 53 bp regions within the promoter of the juvenile hormone esterase B gene. Southern blot analysis revealed the presence of Mild-1 and -3 elements in both Leptinotarsa decemlineata and Leptinotarsa juncta indicating that these elements are ancestral to the L. decemlineata, L. juncta separation.

Keywords: Chrysomelidae, Coleoptera, Leptinotarsa juncta, transposons

Received: September 16, 2010; Accepted: November 19, 2010; Published: April 5, 2011

Download citation

References

  1. ALTSCHUL S.F., MADDEN T.L., SCHAFFER A.A., ZHANG J., ZHANG Z., MILLER W. & LIPMAN D.J. 1997: Gapped Blast and PSIBlast: a new generation of protein database search programs. Nucl. Acids Res. 25: 3389-3402. Go to original source...
  2. BRAQUART C., ROYER V. & BOUHIN H. 1999: DEC: a new miniature inverted-repeat transposable element from the genome of the beetle Tenebrio molitor. Insect Mol. Biol. 8: 571-574 Go to original source...
  3. BUREAU T.E. & WESSLER S.R. 1992: Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell 4: 1283-1294 Go to original source...
  4. BUREAU T.E. & WESSLER S.R. 1994a: Mobile inverted-repeat elements of the Tourist family are associated with genes of many cereal grasses. Proc. Natl. Acad. Sci. USA 91: 1411-1415 Go to original source...
  5. BUREAU T.E. & WESSLER S.R. 1994b: Stowaway: A new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell 6: 907-916 Go to original source...
  6. BUREAU T.E., RONALD P.C. & WESSLER S.R. 1996: A computerbased systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes. Proc. Natl. Acad. Sci. USA 93: 8524-8529 Go to original source...
  7. CLOUTIER C., JEAN C. & BAUDUIN F. 1996: More biological control for a sustainable potato pest management. In Duchesne R.-M. & Boiteau G. (eds): Proceedings of the Symposium 1995 Potato Pest Control. Agri-Food Canada, Canada Agriculture, Quebec, pp. 15-52
  8. COTTY S. & LASHOMB J. 1982: Vegetative growth and yield response of eggplant to varying first generation Colorado potato beetle densities. J. N.Y. Entomol. Soc. 90: 220-228
  9. DENLINGER D.L., YOCUM G.D. & RINEHART J.P. 2005: Hormonal control of diapause. In Gilbert L.I., Iatrou K. & Gill S.S. (eds): Molecular Insect Sciences. Vol. 3. Endocrinology. Elsevier, Amsterdam, pp. 615-650
  10. FELSENSTEIN J. 1985: Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791 Go to original source...
  11. FERRO D.N. 1985: Pest status and control strategies of the Colorado potato beetle. In Ferro D.N. & Voss R.N. (eds): Proceedings of the Symposium on the Colorado Potato Beetle, 17th International Congress of Entomology. Massachusetts Agricultural Experimental Station Research Bulletin 704, pp. 1-8
  12. FESCHOTTE C. & MOUCHES C. 2000: Recent amplification of miniature inverted-repeat transposable elements in the vector mosquito Culex pipiens: characterization of the Mimo family. Gene 250: 109-116 Go to original source...
  13. FESCHOTTE C., ZHANG X. & WESSLER S.R. 2002a: Miniature inverted-repeat transposable elements and their relationship to established DNA transposons. In Craig N.L., Craigie R., Gellert M. & Lambowitz A.M. (eds): Mobile DNA II. ASM Press, Washington, D.C., pp. 1147-1158
  14. FESCHOTTE C., JIANG N. & WESSLER S.R. 2002b: Plant transposable elements: where genetics meets genomics. Nature Rev. Genet. 3: 329-341 Go to original source...
  15. FESCHOTTE C., OSTERLUND M.T., PEELER R. & WESSLER S.R. 2005: DNA-binding specificity of rice mariner-like transposases and interactions with Stowaway MITES. Nucl. Acids Res. 33: 2153-2165 Go to original source...
  16. GREGORY T.R. & HEBERT P.D.N. 1999: The modulation of DNA context: proximate causes and ultimate consequences. Genome Res. 9: 317-324
  17. HAMILTON G.C. & LASHOMB J. 1996: Comparison of conventional and biological control intensive pest management programs on eggplant in New Jersey. Fla. Entomol. 79: 488-496 Go to original source...
  18. HARE J.D. 1990: Ecology and management of the Colorado potato beetle. Annu. Rev. Entomol. 35: 81-100 Go to original source...
  19. IZSVAK Z., IVICS Z., SHIMODA N., MOHN D., OKAMOTO H. & HACKETT P.B. 1999: Short inverted-repeat transposable elements in teleost fish and implications for a mechanism of their amplification. J. Mol. Evol. 48: 13-21 Go to original source...
  20. JIANG N., BAO Z., ZHANG X., HIROCHIKA H., EDDY S.R., MCCOUCH S.R. & WESSLER S.R. 2003: An active DNA transposon family in rice. Nature 241: 163-167 Go to original source...
  21. JIANG N., FESCHOTT C., ZHANG X. & WESSLER S.R. 2004: Using rice to understand the origin and amplification of miniature inverted repeated transposable elements (MITEs). Curr. Opion. Plant Biol. 7: 115-119 Go to original source...
  22. KIDWELL M.G. & LISCH D.R. 2001: Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution 55: 1-24 Go to original source...
  23. KIDWELL M.G. & LISCH D.R. 2002: Transposable elements as sources of genomic variation. In Craig N.L., Craigie R., Gellert M. & Lambowitz A.M. (eds): Mobile DNA II. ASM Press, Washington, D.C., pp. 59-90
  24. KOOPMANSCHAP A.B., LAMMERS J.H.M. & DE KORT C.A.D. 1995: The structure of the gene encoding diapause protein 1 of the Colorado potato beetle (Leptinotarsa decemlineata). J. Insect Physiol. 41: 509-518 Go to original source...
  25. LE Q.H., WRIGHT S., YU Z. & BUREAU T. 2000: Transposon diversity in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97: 7376-7381 Go to original source...
  26. LE Q.H., TURCOTTE K. & BUREAU T. 2001: Tc8, a Tourist-like transposon in Caenorhabditis elegans. Genetics 158: 1081-1088
  27. MENZEL G., DECHYEVA D., KELLER H., LANGE C. & HIMMELBAUER H. 2006: Mobilization and evolutionary history of miniature inverted-repeat transposable elements (MITEs) in Beta vulgaris L. Chromosome Res. 14: 831-844 Go to original source...
  28. MESSING J., BHARTI A.K., KARLOWSKI W.M., GUNDLACH H., KIM H.R., YU Y., WEI F., FUKS G., SODERLUND C.A., MAYER K.F.X. & WING R.A. 2004: Sequence composition and genome organization of maize. Proc. Natl. Acad. Sci. USA 101: 14349-14354 Go to original source...
  29. MORGAN G.T. 1995: Identification in the human genome of mobile elements spread by DNA mediated transposition. J. Mol. Biol. 254: 1-5 Go to original source...
  30. OOSUMI T., GARLICK B. & BELKNAP W.R. 1996: Identification of putative nonautonomous transposable elements associated with several transposon families in Caenorhabditis elegans. J. Mol. Evol. 43: 11-18 Go to original source...
  31. PETERSEN G. & SEBERG O. 2000: Phylogenetics evidence for excision of stowaway miniature inverted-repeat transposable elements in Triticeae (Poaceae). Mol. Biol. Evol. 17: 1589-1596 Go to original source...
  32. REMIGEREAU M.-S., ROBIN O., SILJAK-YAKOVLEV S., SARR A., ROBERT T. & LANGIN T. 2006: Tuareg, a novel miniatureinverted repeated family of pearl millet (Pennisetum glaucum) related to the PIF superfamily of maize. Genetica 128: 205-216 Go to original source...
  33. ROEHRDANZ R., HEILMANN L., SENECHAL P., SEARS S. & EVENSON P. 2010: Histone and ribosomal RNA repetitive gene clusters of the boll weevil are linked in a tandem array. Insect Mol. Biol. 19: 463-471 Go to original source...
  34. RZHETSKY A. & NEI M. 1992: A simple method for estimating and testing minimum evolution trees. Mol. Biol. Evol. 9: 945-967
  35. SANMIGUEL P., TKHONOV A., JIN Y.-K., MOTCHOULSKAIA N., ZAKHAROV D., MELAKE-BERHAN A., SPRINGER P.S., EDWARDS K.J., LEE M., AVRAMOVA Y. & BEMMETEN J.L. 1996: Nested retrotransposons in the intergenic region of the maize genome. Science 274: 765-768 Go to original source...
  36. SCHALK J.M. & STONER A.K. 1979: Tomato production in Maryland: Effects of different densities of larvae and adults of the Colorado potato beetle. J. Economic Entomol. 72: 826-829. Go to original source...
  37. SMIT A.F.A. & RIGGS A.D. 1996: Tiggers and DNA transposon fossils in the human genome. Proc. Natl. Acad. Sci. USA 93: 1443-1448 Go to original source...
  38. SONG W.-Y., PI L.-Y., BUREAU T.E. & RONALD P.C. 1998: Identification and characterization of 14 transposon-like elements in the noncoding region of members of the Xa21 family of disease resistance genes in rice. Mol. Gen. Genet. 258: 449-456 Go to original source...
  39. TAMURA K., NEI M. & KUMAR S. 2004: Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 101: 11030-11035 Go to original source...
  40. TAMURA K., DUDLEY J., NEI M. & KUMAR S. 2007: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599 Go to original source...
  41. TU Z. 1997: Three novel families of miniature inverted-repeat transposable elements are associated with genes of the yellow fever mosquito, Aedes aegypti. Proc. Natl. Acad. Sci. USA 94: 7475-7480 Go to original source...
  42. TU Z. 2005: Insect transposable elements. In Gilbert L.I., Iatrou K. & Gill S.S. (eds): Molecular Insect Sciences. Vol. 4. Biochemistry and Molecular Biology. Elsevier, Amsterdam, pp. 395-474
  43. TU Z. & ORPHANIDIS S.P. 2001: Microuli, a family of miniature subterminal inverted-repeat transposable elements (MSITEs): Transposition without terminal inverted repeats. Mol. Biol. Evol. 18: 893-985 Go to original source...
  44. TURCOTTE K. & BUREAU T. 2002: Phylogenetics analysis reveals Stowaway-like elements may represent a forth family of the IS630-Tc1-marniner superfamily. Genome 45: 82-90 Go to original source...
  45. UNSAL K. & MORGAN G.T. 1995: A novel group of families of short interspersed repetitive elements (SINEs) in Xenopus: evidence of a specific target site for DNA-mediated transposition in inverted-repeat SINEs. J. Mol. Biol. 248: 812-823 Go to original source...
  46. VERMUNT A.M.W., KOOPMANSCHAP A.B., VLAK J.M. & DE KORT C.A.D. 1998: Evidence for two juvenile hormone esteraserelated genes in the Colorado potato beetle. Insect Mol. Biol. 7: 327-336 Go to original source...
  47. WATERSTON R. & SULSTON J. 1995: The genome of Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 92: 10836-10840 Go to original source...
  48. DE WILDE J., DUINTJER C.S. & MOOK L. 1959: Physiology of diapause in the adult Colorado beetle - I. The photoperiod as a controlling factor. J. Insect Physiol. 3: 75-85 Go to original source...
  49. YANG G., DONG J., CHANDRASEKHARRAN M.B. & HALL T.C. 2001: Kiddo, a new transposable element family closely associated with rice genes. Mol. Genet. Genomics 266: 417-424 Go to original source...
  50. YEADON P.J. & CATCHESIDE D.E. 1995: Guest: a 98 bp invert repeat transposable element in Neurospora crassa. Mol. Gen. Genet. 247: 105-109 Go to original source...
  51. YOCUM G.D. 2001: Differential expression of two HSP70 transcripts in response to cold shock, thermoperiod, and adult diapause in the Colorado potato beetle. J. Insect Physiol. 47: 1139-1145 Go to original source...
  52. YOCUM G.D. 2003: Isolation and characterization of three diapause-associated transcripts from the Colorado potato beetle, Leptinotarsa decemlineata. J. Insect Physiol. 49: 161-169 Go to original source...
  53. YOCUM G.D., RINEHART J.P., CHIRUMAMILLA-CHAPARA A. & LARSON M.L. 2009a: Characterization of gene expression patterns during the initiation and maintenance phases of diapause in the Colorado potato beetle, Leptinotarsa decemlineata. J. Insect Physiol. 5: 32-39 Go to original source...
  54. YOCUM G.D., RINEHART J.P. & LARSON M.L. 2009b: Downregulation of gene expression between the diapause initiation and maintenance phases of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Eur. J. Entomol. 106: 471-476 Go to original source...
  55. YU J., HU S., WANG J., WONG G.K.-S., LI S. ET AL. 2002: A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296: 92-100 Go to original source...
  56. ZHANG X., FESCHOTTE C., ZHANG Q., JIANG N., EGGLESTON W.B. & WESSLER S.R. 2001: P instability factor: an active maize transposon system associated with the amplification of Tourist-like MITEs and a new superfamily of transposon. Proc. Natl. Acad. Sci. USA 98: 12572-12577 Go to original source...
  57. ZUKER M. 2003: Mfold web server for nucleic acid folding and hybridization prediction. Nucl. Acids Res. 31: 3406-4315 Go to original source...
  58. ZUKER M., MATHEWS D.H. & TURNER D.H. 1999: Algorithms and thermodynamics for RNA secondary structure prediction: A Practical Guide. In Barciszewski J. & Clark B.F.C. (eds): RNA Biochemistry and Biotechnology. NATO ASI Series, Kluwer Academic Publishers, Dordrecht, pp. 11-43