Eur. J. Entomol. 108 (1): 41-45, 2011 | 10.14411/eje.2011.005

Sequestration of aristolochic acids from meridic diets by larvae of Battus polydamas archidamas (Papilionidae: Troidini)

Carlos F. PINTO1, Alejandro URZÚA2, Hermann M. NIEMEYER*,1
1 Laboratorio de Química Ecológica, Universidad de Chile, Casilla 653, Santiago, Chile
2 Laboratorio de Química Ecológica, Universidad de Santiago de Chile, Casilla 40, C-33 Santiago, Chile

Larvae of the butterfly, Battus polydamas archidamas (Papilionidae: Troidini) feed exclusively on aristolochic acid (AAs)-containing Aristolochia species (Aristolochiaceae). The distribution of sequestrated AAs in the tissues (body, integument and osmeterial secretions) of B. polydamas archidamas larvae during their development, when fed on a meridic diet containing either a higher or lower concentration of AAs (AAI and AAII) than occurs naturally in the aerial tissues of their host plant, was determined. Accumulation of AAs in the body and integument was proportional to the weight of larvae and greater in the larvae that fed on the diet containing the higher concentration of AAs. Phenolic AAs (AAIa and AAIVa) not present in the diets were found in all larval tissues examined. Integument and body extracts had a higher AAI/AAII ratio than in the original diet and also a relatively high AAIa/AAIVa ratio, suggesting a preferred AAII to AAIa transformation in those larval tissues. In the osmeterial secretion, the value of the AAI/AAII ratio was similar to that in the diets and the AAIa/AAIVa ratio close to 1, which suggests that hydroxylation of AAI to AAIVa and of AAII to AAIa occur to similar extents. The higher accumulation of AAs and the relatively higher proportion of AAI, one of the most toxic AAs, in the integument, suggest that their role is to deter attacks by natural enemies.

Keywords: Lepidoptera, Papilionidae, Battus polydamas archidamas, Aristolochia chilensis, aristolochic acids, sequestration of toxins, uptake of toxins

Received: May 9, 2010; Accepted: June 24, 2010; Published: January 3, 2011

Download citation

References

  1. ARLT V.M., STIBOROVA M. & SCHMEISER H.H. 2002: Aristolochic acid as a probable human cancer hazard in herbal remedies: a review. Mutagenesis 17: 265-277 Go to original source...
  2. BALACHANDRAN P., WEI F., LIN R.C., KHAN I.A. & PASCO D.S. 2005: Structure activity relationships of aristolochic acids analogues: toxicity in cultured renal epithelial cells. Kidney Int. 67: 1797-1805 Go to original source...
  3. BOWERS M.D. 1993: Aposematic caterpillars: life-styles of the warningly colored and unpalatable. In Stamp N.E. & Casey T.M. (eds): Caterpillars: Ecological and Evolutionary Constraints on Foraging. Chapman and Hall, London, pp. 331-371
  4. CHEN Z.L. & ZHU D.Y. 1987: Aristolochia alkaloids. In Brossi A. (ed.): The Alkaloids: Chemistry and Pharmacology. Academic Press, San Diego, pp. 29-65
  5. CONOVER W.J. & IMAN R.L. 1981: Rank transformations as a bridge between parametric and nonparametric statistics. Am. Statist. 35: 124-129
  6. EHLRICH P.R. & RAVEN P.H. 1964: Butterflies and plants: a study in coevolution. Evolution 18: 586-608 Go to original source...
  7. FORDYCE J.A. 2000: A model without a mimic: aristolochic acids from the California pipevine swallowtail, Battus philenor hirsuta, and its host plant, Aristolochia californica. J. Chem. Ecol. 26: 2567-2578 Go to original source...
  8. FORDYCE J.A. & NICE C.C. 2008: Antagonistic, stage-specific selection on defensive chemical sequestration in a toxic butterfly. Evolution 62: 1610-1617 Go to original source...
  9. FORDYCE J.A., MARION Z.H. & SHAPIRO A.M. 2005: Phenological variation in chemical defense of the pipevine swallowtail Battus philenor. J. Chem. Ecol. 31: 3835-2846 Go to original source...
  10. HONDA K. 1980: Osmeterial secretions of papilionid larvae in the genera Luehdorfia, Graphium and Atrophaneura (Lepidoptera). Insect Biochem. 10: 583-588. Go to original source...
  11. HONDA K. 1983: Defensive potential of components of the larval osmeterial secretion of papilionid butterflies against ants. Physiol. Entomol. 8: 173-179 Go to original source...
  12. HONDA K., HAYASHI N., ABE F. & YAMAUCHI T. 1997: Pyrrolizidine alkaloids mediate host-plant recognition by ovipositing females of an Old World danaid butterfly, Idea leuconoe. J. Chem. Ecol. 23: 1703-1713 Go to original source...
  13. KUMAR V., POONAM PRASAD A.K. & PARMAR V.S. 2003: Naturally occurring aristolactams, aristolochic acids and dioxoaporphines and their biological activities. Nat. Prod. Rep. 20: 565-583 Go to original source...
  14. LAJIDE L., ESCOUBAS P. & MIZUTANI J. 1993: Antifeedant activity of metabolites of Aristolochia albida against the tobacco cutworm Spodoptera litura. J. Agric. Food Chem. 41: 669-673 Go to original source...
  15. MARTICORENA C. & QUEZADA M. 1985: Catalog of the vascular flora of Chile. Gayana Botan. 42: 3-157
  16. MCDONALD J.H. 2009: Handbook of Biological Statistics. 2nd ed. Sparky House Publishing, Baltimore, MD
  17. MEI N., ARLT V.M., PHILLIPS D.H., HEFLICH R.H. & CHEN T. 2006: DNA adduct formation and mutation induction by aristolochic acid in rat kidney and liver. Mutat. Res. 602: 83-91 Go to original source...
  18. MILLER J.J & FEENY P.P. 1989: Interspecific differences among swallowtail larvae (Lepidoptera: Papilionidae) in susceptibility to aristolochic acids and berberine. Ecol. Entomol. 14: 287-296 Go to original source...
  19. MIX D.B., GUINAUDEAU H. & SHAMMA M. 1982: The aristolochic acids and aristolactams. J. Nat. Prod. 45: 657-665 Go to original source...
  20. NAVAS L.E. 1976: Flora de la Cuenca de Santiago. 2. Ediciones de la Universidad de Chile, Santiago, 559 pp
  21. NISHIDA R. 1995: Sequestration of plant secondary compounds by butterflies and moths. Chemoecology 5/6[1994-1995]: 127-138
  22. NISHIDA R. 2002: Sequestration of defensive substances from plants by Lepidoptera. Annu. Rev. Entomol. 47: 57-92 Go to original source...
  23. NISHIDA R. 2005: Chemosensory basis of host recognition in butterflies - multicomponent system of oviposition stimulants and deterrents. Chem. Senses 30: 293-294 Go to original source...
  24. NISHIDA R. & FUKAMI H. 1989: Ecological adaptation of an Aristolochiaceae-feeding swallowtail butterfly, Atrophaneura alcinous, to aristolochic acids. J. Chem. Ecol. 15: 2549-2563 Go to original source...
  25. NISHIDA R., KIM C.S., FUKAMI H. & IRIE R. 1991: Ideamine N-oxides: pyrrolizidine alkaloids sequestered by the danaine butterfly, Idea leuconoe. Agric. Biol. Chem. 55: 1787-1792 Go to original source...
  26. NISHIDA R., SCHULZ S., KIM C.S., FUKAMI H., KUWAHARA Y., HONDA K. & HAYASHI N. 1996: Male sex pheromone of a giant danaine butterfly, Idea leuconoe. J. Chem. Ecol. 22: 949-972 Go to original source...
  27. OMURA H., HONDA K. & FEENY P. 2006: From terpenoids to aliphatic acids: further evidence for late-instar switch in osmeterial defense as a characteristic trait of swallowtail butterflies in the tribe Papilionini. J. Chem. Ecol. 32: 1999-2012 Go to original source...
  28. OPITZ S.E.W. & MULLER C. 2009: Plant chemistry and insect sequestration. Chemoecology 19: 117-154 Go to original source...
  29. PINTO C.F., TRONCOSO A.J., URZUA A. & NIEMEYER H.M. 2009a: Use of volatiles of Aristolochia chilensis (Aristolochiaceae) in host searching by fourth-instar larvae and adults of Battus polydamas archidamas (Lepidoptera: Papilionidae: Troidini). Eur. J. Entomol. 106: 63-68 Go to original source...
  30. PINTO C.F., TRONCOSO A.J., URZUA A. & NIEMEYER H.M. 2009b: Aristolochic acids affect the feeding behaviour and development of Battus polydamas archidamas larvae (Lepidoptera: Papilionidae: Troidini). Eur. J. Entomol. 106: 357-361 Go to original source...
  31. PRIESTAP H.A. 1987: Minor aristolochic acids from Aristolochia argentina and mass spectral analysis of aristolochic acids. Phytochemistry 26: 519-529 Go to original source...
  32. ROTHSCHILD M. & EDGAR J.A. 1978: Pyrrolizidine alkaloids from Senecio vulgaris sequestered and stored by Danaus plexippus. J. Zool. Lond. 186: 347-349 Go to original source...
  33. SCHOONHOVEN L.M., VAN LOON J.J.A. & DICKE M. 2005: InsectPlant Biology. Oxford University Press, Oxford, 421 pp
  34. SEIBER J.N., TUSKES P.M., BROWER L.P. & NELSON C.J. 1980: Pharmacodynamics of some individual milkweed cardenolides fed to larvae of the monarch butterfly (Danaus plexippus). J. Chem. Ecol. 6: 321-339 Go to original source...
  35. SHIBUTANI S., DONG H., SUZUKI N., UEDA S., MILLER F. & GROLLMAN A.P. 2007: Selective toxicity of aristolochic acids I and II. Drug. Metab. Dispos. 35: 1217-1222 Go to original source...
  36. SIME K.R. 2002: Chemical defence of Battus philenor larvae against attack by the parasitoid Trogus pennator. Ecol. Entomol. 27: 337-345 Go to original source...
  37. SIME K.R., FEENY P.P. & HARIBAL M.M. 2000: Sequestration of aristolochic acids by the pipevine swallowtail butterfly, Battus philenor (L.): evidence and ecological implications. Chemoecology 10: 169-178 Go to original source...
  38. SOKAL R.R. & ROHLF F.J. 1995: Biometry. 3rd ed. W.H. Freeman, New York, 887 pp
  39. STAMP N.E. 1986: Physical constraints of defense and response to invertebrate predators by pipevine caterpillars (Battus philenor). J. Lepid. Soc. 40: 191-205
  40. URZUA A., SALGADO G., CASSELS B.K. & ECKHARDT G. 1983: Aristolochic acids in Aristolochia chilensis and the Aristolochia-feeder Battus archidamas (Lepidoptera). Collect. Czech. Chem. Commun. 48: 1513-1519 Go to original source...
  41. URZUA A., RODRIGUEZ R. & CASSELS B.K. 1987: Fate of ingested aristolochic acids in Battus archidamas. Biochem. Syst. Ecol. 15: 687-689 Go to original source...
  42. WEINTRAUB J.D. 1995: Host plant association patterns and phylogeny in the tribe Troidini. In Scriber J.M., Tsubaki Y. & Lederhouse R.C. (eds): Swallowtail Butterflies: Their Ecology and Evolutionary Biology. Scientific Publishers, Gainesville, FL, pp. 307-316