Eur. J. Entomol. 106 (4): 599-605, 2009 | DOI: 10.14411/eje.2009.075

Experimental evidence for density-determined wing dimorphism in two bush-crickets (Ensifera: Tettigoniidae)

Dominik PONIATOWSKI, Thomas FARTMANN*
Department of Community Ecology, Institute of Landscape Ecology, University of Münster, Robert-Koch-Straße 26, 48149 Münster, Germany

Macroptery is common in many species of Orthoptera, but the causes are still discussed. Besides the assumption that macroptery is genetically determined, there is evidence that wing dimorphism is induced by environmental factors, particularly population density. However, most of the research is on pest species. In contrast, knowledge of wing dimorphism in species that occur at low population densites is still poor. Our study aims to test how density actually affects macroptery. As model organisms we chose two bush-cricket species of the genus Metrioptera (Ensifera: Tettigoniidae): While long-winged M. roeselii (Hagenbach, 1822) occur regularly, macropterous M. brachyptera (Linnaeus, 1761) are rare and are never observed outside their mating habitat. Nymphs of populations from the range core of both species (340 individuals each) were reared in groups of three and six individuals per 500 cm3 box, and individually. Our analyses revealed that development of macropters was mainly affected by the initial rearing densities. Compared with those reared individually the number of macropters was significantly higher among individuals reared at medium and high densities. The percentage of macropterous individuals was about twice as high in M. brachyptera as in M. roeselii, and the development of macropters significantly differed between the two species. These findings lead to the conclusion that macropterism is mainly influenced by density stress in both bush-crickets. Genetically determined wing dimorphism is unlikely, otherwise the observed high numbers of long-winged individuals of M. brachyptera, which are very rare under natural conditions, would never have developed in the laboratory. Macropterous M. brachyptera may rarely be found in the field, but we argue that this is due to low natural densities and, accordingly, to rare exposure to density stress.

Keywords: Crowding, density, dispersal, macroptery, Metrioptera brachyptera, Metrioptera roeselii, Tettigoniidae, Orthoptera, phenotypic plasticity

Received: March 5, 2009; Accepted: May 18, 2009; Published: November 20, 2009

Download citation

References

  1. ANDO Y. & HARTLEY J.C. 1982: Occurrence and biology of a long-winged form of Conocephalus discolor. Entomol. Exp. Appl. 32: 238-241 Go to original source...
  2. BATES D., MAECHLER M. & DAI B. 2008: lme4: Linear MixedEffects Models Using S4 Classes. R package version 0.999375-28. http://lme4.r-forge.r-project.org/
  3. BOUAICHI A. & SIMPSON S.J. 2003: Density-dependent accumulation of phase characteristics in a natural population of the desert locust Schistocerca gregaria. Physiol. Entomol. 28: 25-31 Go to original source...
  4. CHAPMAN R.F., COOK A.G., MITCHELL G.A. & PAGE W.W. 1978: Wing dimorphism and flight in Zonocerus variegatus (L.) (Orthoptera: Pyrgomorphidae). Bull. Entomol. Res. 68: 229-242 Go to original source...
  5. DENNO R.F., RODERICK G.K, PETERSON M.A., HUBERTY A.F., DOBEL H.G., EUBANKS M.D., LOSEY J.E. & LANGELLOTTO G.A. 1996: Habitat persistence underlies intraspecific variation in the dispersal strategies of planthoppers. Ecol. Mon. 66: 389-408 Go to original source...
  6. DENNO R.F., HAWTHORNE D.J., THORNE B.L. & GRATTON C. 2001: Reduced flight capability in British Virgin Island populations of a wing-dimorphic insect: the role of habitat isolation, persistence, and structure. Ecol. Entomol. 26: 25-36 Go to original source...
  7. ENDO C. 2006: Seasonal wing dimorphism and life cycle of the mole cricket Gryllotalpa orientalis (Orthoptera: Gryllotalpidae). Eur. J. Entomol. 103: 743-750 Go to original source...
  8. FARTMANN T. 1997: BiozGnologische Untersuchungen zur Heuschreckenfauna auf Magerrasen im Naturpark Maerkische Schweiz (Ostbrandenburg). Arb. Inst. LandschaftsGkol. 3: 1-62
  9. HARRISON R.G. 1980: Dispersal polymorphisms in insects. Annu. Rev. Ecol. Syst. 11: 95-118 Go to original source...
  10. HARZ K. 1969: Die Orthopteren Europas. Vol. I. Dr. W. Junk, The Hague, 749 pp
  11. HELFERT B. & SANGER K. 1975: Haltung und Zucht europaeischer Heuschrecken (Orthoptera: Saltatoria) im Labor. Z. Angew. Zool. 62: 267-279
  12. HIGAKI M. & ANDO Y. 2003: Effects of crowding and photoperiod on wing morph and egg production in Eobiana engelhardti subtropica (Orthoptera: Tettigoniidae). Appl. Entomol. Zool. 38: 321-325 Go to original source...
  13. HOCHKIRCH A. & DAMERAU M. 2009: Rapid range expansion of a wing-dimorphic bush-cricket after the 2003 climatic anomaly. Biol. J. Linn. Soc. 97: 118-127 Go to original source...
  14. INGRISCH S. 1978: Labor- und Freilanduntersuchungen zur Dauer der postembryonalen Entwicklung einiger mitteleuropaeischer Laubheuschrecken (Orthoptera: Tettigoniidae) und ihre Beeinflussung durch Temperatur und Feuchte. Zool. Anz. 200: 309-320
  15. INGRISCH S. & KOHLER G. 1998: Die Heuschrecken Mitteleuropas. Westarp Wissenschaften, Magdeburg, 460 pp
  16. KARNY H. 1913: Uber die Reduktion der Flugorgane bei den Orthopteren. Ein Beitrag zu Dollo's Irreversibilitaetsgesetz. Zool. Jb. (Physiologie) 33: 27-40
  17. KLEUKERS R.M.J.C., VAN NIEUKERKEN E.J., ODE B., WILLEMSE L.P.M. & VAN WINGERDEN W.K.R.E. 1997: De Sprinkhanen en Krekels van Nederland (Orthoptera). Nederlandse Fauna 1. Nationaal Natuurhistorisch Museum, KNNV Uitgeverij & EIS-Nederland, Leiden, 415 pp
  18. KOHLER G. 2002: Experimente und Erhebungen zur Fluegeligkeit beim Gemeinen Grashuepfer, Chorthippus parallelus (Zetterstedt) (Caelifera: Acrididae) - ein Beitrag zur Interpretation von Makropterie. Articulata 17: 1-19
  19. LEYER I. & WESCHE K. 2007: Multivariate Statistik in der Okologie. Springer, Berlin, Heidelberg, 221 pp
  20. MARSHALL J.A. & HAES E.C.M. 1988: Grasshoppers and Allied Insects of Great Britain and Ireland. Harley, Colchester, 252 pp
  21. MASAKI S. & SHIMIZU T. 1995: Variability in wing form of crickets. Res. Popul. Ecol. 37: 119-128 Go to original source...
  22. OLVIDO A.E., ELVINGTON E.S. & MOUSSEAU T.A. 2003: Relative effects of climate and crowding on wing polymorphism in the southern ground cricket, Allonemobius socius (Orthoptera: Gryllidae). Fla Entomol. 86: 158-164 Go to original source...
  23. PONIATOWSKI D. & FARTMANN T. 2005: Die Okologie von Roesels Beissschrecke (Metrioptera roeselii) im Feuchtgruenland der Medebacher Bucht (Suedwestfalen). Articulata 20: 85-111
  24. PONIATOWSKI D. & FARTMANN T. 2007: Kleinraeumig heterogen strukturierte Hochheiden in mikroklimatisch guenstiger Lage - Lebensraeume der Kurzfluegeligen Beissschrecke (Metrioptera brachyptera) im Quellgebiet der Diemel (Suedwestfalen/Nordhessen). Articulata 22: 153-171
  25. PONIATOWSKI D. & FARTMANN T. 2008a: The classification of insect communities: Lessons from orthopteran assemblages of semi-dry calcareous grasslands in central Germany. Eur. J. Entomol. 105: 659-671 Go to original source...
  26. PONIATOWSKI D. & FARTMANN T. 2008b: Massenvorkommen makropterer Roesels Beissschrecken (Metrioptera roeselii) im Sommer 2007. Articulata 23: 53-56
  27. PUSCHNIG R. 1914: Bemerkungen zur Arbeit H. Karnys: Uber die Reduktion der Flugorgange bei Orthopteren. Zool. Jb. (Zoologie) 34: 515-542
  28. RAMME W. 1951: Zur Systematik, Faunistik und Biologie der Orthopteren von Suedost-Europa und Vorderasien. Mitt. Zool. Mus. Berlin 27: 1-432
  29. R-DEVELOPMENT-CORE-TEAM 2009: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. URL http://www.R-project.org
  30. RITCHIE M.G., BUTLIN R.K. & HEWITT G.M. 1987: Causation, fitness effects and morphology of macropterism in Chorthippus parallelus (Orthoptera: Acrididae). Ecol. Entomol. 12: 209-218 Go to original source...
  31. SANGER K. 1984: Die Populationsdichte als Ursache makropterer Okomorphosen von Tessellana vittata (Charp.) (Orthoptera, Tettigoniidae). Zool. Anz. 213: 68-76.
  32. SANGER K. & HELFERT B. 1975: Spontanes Auftreten holopterer Formen von Tessellana vittata und Metrioptera roeseli (Orthoptera: Tettigoniidae) in Laborzuchten. Anz. Ost. Akad. Wiss. (Math.-Nat.) 1975: 192-194
  33. SCHOUTEN M.A., VERWEIJ P.A., BARENDREGT A., KLEUKERS R.J.M. & DE RUITER P.C. 2007: Nested assemblages of Orthoptera species in the Netherlands: the importance of habitat features and life-history traits. J. Biogeogr. 34: 1938-1946 Go to original source...
  34. SIMMONS A.D. & THOMAS C.D. 2004: Changes in dispersal during species' range expansions. Am. Nat. 164: 378-395 Go to original source...
  35. TANAKA S., HAKOMORI T. & HASEGAWA E. 1993: Effects of daylength and hopper density on reproductive traits in a Japanese population of the migratory locust, Locusta migratoria L. J. Insect Physiol. 39: 571-580 Go to original source...
  36. THOMAS C.D., BODSWORTH E.J., WILSON R.J., SIMMONS A.D., DAVIES Z.G., MUSCHE M. & CONRADT L. 2001: Ecological and evolutionary processes at expanding range margins. Nature 411: 577-581 Go to original source...
  37. UVAROV B.P. 1966: Grasshoppers and Locusts. A Handbook of General Acridology. Vol. I. Cambridge University Press, Cambridge, 481 pp
  38. ZERA A.J. 2004: The endocrine regulation of wing polymorphism in insects: state of the art, recent surprises, and future directions. Integr. Comp. Biol. 43: 607-616 Go to original source...
  39. ZERA A.J. & DENNO R.F. 1997: Physiology and ecology of dispersal polymorphism in insects. Annu. Rev. Entomol. 42: 207-230 Go to original source...