Eur. J. Entomol. 106 (1): 63-68, 2009 | DOI: 10.14411/eje.2009.010

Use of volatiles of Aristolochia chilensis (Aristolochiaceae) in host searching by fourth-instar larvae and adults of Battus polydamas archidamas (Lepidoptera: Papilionidae: Troidini)

Carlos F. PINTO1, Alejandra J. TRONCOSO1, Alejandro URZÚA2, Hermann M. NIEMEYER*,1
1 Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
2 Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 C-33, Santiago, Chile

Papilionid butterflies of the tribe Troidini are specialists on plants of the family Aristolochiaceae. The role of plant volatiles in host recognition by adult and larval stages of these insects remains unknown. We used Battus polydamas archidamas (Papilionidae: Troidini) and its host-plant, Aristolochia chilensis (Aristolochiaceae), to study: (i) the olfactory and electrophysiological responses of adults to headspace volatiles of the host-plant, (ii) the chemical composition of the headspace volatiles of the host-plant, (iii) the patterns of aggregation of larvae in the field in order to ascertain the time when they leave the plant where the eggs were laid, and (iv) the olfactory responses of solitary-feeding fourth-instar larvae to headspace volatiles of the host-plant. Larvae left their initial host-plant during the third or fourth instar. Host-plant headspace volatiles attracted fourth-instar larvae as well as adults; adult females were more responsive than males. Taken together, these results reveal changes in the responsiveness to host-plant volatiles during development, and provide an insight into the host-plant specialization of this butterfly.

Keywords: Host finding, aristolochic acids, host specialisation, host-plant volatiles, Battus polydamas archidamas

Received: August 5, 2008; Accepted: October 21, 2008; Published: March 10, 2009

Download citation

References

  1. BRUCE T.J.A., WADHAMS L.J. & WOODCOCK C.M. 2005: Insect host location: a volatile situation. Trends Plant Sci. 10: 270-274 Go to original source...
  2. BRYANT S.R., THOMAS C.D. & BALE J.S. 2000: Thermal ecology of gregarious and solitary nettle-feeding nymphalid butterfly larvae. Oecologia 122: 1-10 Go to original source...
  3. BUSTAMANTE O.R., CHACON P. & NIEMEYER H.M. 2006: Patterns of chemical defenses in plants: an analysis of the vascular flora of Chile. Chemoecology 16: 145-151 Go to original source...
  4. DENNO R.F. & BENREY B. 1997: Aggregation facilitates larval growth in the neotropical nymphalid butterfly Chlosyne janais. Ecol. Entomol. 22: 133-141 Go to original source...
  5. FEENY P. 1976: Plant apparency and chemical defense. Rec. Adv. Phytochem. 10: 1-41
  6. FEENY P. 1991: Chemical constraints on the evolution of swallowtail butterflies. In Price P.W., Lewinsohn T.M., Fernandes G.W. & Benson W.W. (eds): Plant-Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions. John Wiley, New York, pp. 315-340
  7. FEENY P. 1995: Ecological opportunism and chemical constraints on the host associations of swallowtail butterflies. In Scriber J.M., Tsubaki Y. & Lederhouse R.C. (eds): Swallowtail Butterflies; Their Ecology and Evolutionary Biology. Scientific Publishers, Gainesville, FL, pp. 9-15
  8. FORDYCE J.A. 2000: A model without a mimic: aristolochic acids from the California pipevine swallowtail, Battus philenor hirsuta, and its host plant, Aristolochia californica. J. Chem. Ecol. 26: 2567-2578 Go to original source...
  9. FORDYCE J.A. 2001: The lethal plant defense paradox remains: inducible host-plant aristolochic acids and the growth and defense of the pipevine swallowtail. Entomol. Exp. Appl. 100: 339-346 Go to original source...
  10. FORDYCE J.A. 2003: Aggregative feeding of pipevine swallowtail larvae enhances hostplant suitability. Oecologia 135: 250-257 Go to original source...
  11. FORDYCE J.A. & SHAPIRO A.M. 2003: Another perspective on the slow growth / high mortality hypothesis: chilling effects on swallowtail larvae. Ecology 84: 263-268 Go to original source...
  12. FORDYCE J.A., MARION Z.H. & SHAPIRO A.M. 2005: Phenological variation in chemical defense of the pipevine swallowtail. J. Chem. Ecol. 31: 3835-2846 Go to original source...
  13. HANSSON B.S. 2002: A bug's smell - research into insect olfaction. Trends Neurosci. 25: 270-274 Go to original source...
  14. HUNTER A.F. 2000: Gregariousness and repellent defences in the survival of phytophagous insects. Oikos 91: 213-224 Go to original source...
  15. INOUYE B.D. & JOHNSON D.M. 2005: Larval aggregation affects feeding rate in Chlosyne poecile (Lepidoptera: Nymphalidae). Fla Entomol. 88: 247-252 Go to original source...
  16. LANDOLT P.J., HEATH R.R., MILLAR J.G., DAVIS-HERNANDEZ K.M., DUEBEN B.D. & WARD K.E. 1994: Effects of host plant, Gossypium hirsutum L., on sexual attraction of cabbage looper moths, Trichoplusia ni (Huebner) (Lepidoptera: Noctuidae). J. Chem. Ecol. 20: 2959-2974 Go to original source...
  17. LILLEY R. & HARDIE J. 1996: Cereal aphid responses to sex pheromones and host-plant odours in the laboratory. Physiol. Entomol. 21: 304-308 Go to original source...
  18. MARTICORENA C. & QUEZADA M. 1985: Catalog of the vascular flora of Chile. Gayana Botan. 42: 3-157.
  19. NAVAS L.E. 1976: Flora de la Cuenca de Santiago. 2. Ediciones de la Universidad de Chile, Santiago, 559 pp
  20. NISHIDA R. 2002: Sequestration of defensive substances from plants by Lepidoptera. Annu. Rev. Entomol. 47: 57-92 Go to original source...
  21. NISHIDA R. 2005: Chemosensory basis of host recognition in butterflies - multi-component system of oviposition stimulants and deterrents. Chem. Senses (Suppl. 1) 30: 293-294 Go to original source...
  22. NISHIDA R. & FUKAMI H. 1989: Ecological adaptation of an Aristolochiaceae-feeding swallowtail butterfly, Atrophaneura alcinous, to aristolochic acids. J. Chem. Ecol. 15: 2549-2563 Go to original source...
  23. OCHIENG S.A., PARK K.C. & BAKER T.C. 2002: Host plant volatiles synergize responses of sex pheromone-specific olfactory receptor neurons in male Helicoverpa zea. J. Comp. Physiol. 188: 325-333 Go to original source...
  24. PAPAJ D.R., FEENY P., SACHDEV K. & ROSENBERRY L. 1992: D-(+)-pinitol, an oviposition stimulant for the pipevine swallowtail butterfly (Battus philenor). J. Chem. Ecol. 18: 799-815 Go to original source...
  25. PENA L. & UGARTE A. 1997: Las Mariposas de Chile. Editorial Universitaria. Santiago, Chile, 359 pp
  26. POONAM V.K., PRASAD A.K. & PARMAR V.S. 2003: Natural occurring aristolactams, aristolochic acids and dioxoaporphines and their biological activities. Nat. Prod. Rep. 20: 565-583 Go to original source...
  27. RAUSHER M.D. 1995: Behavioral ecology of oviposition in the pipevine swallowtail, Battus philenor. In Scriber J.M., Tsubaki Y. & Lederhouse R.C. (eds): Swallowtail Butterflies: Their Ecology and Evolutionary Biology. Scientific Publishers, Gainesville, FL, pp. 53-62
  28. ROTHSCHILD M., REICHSTEIN T., VON EUW J., APLIN R. & HARMAN R.R.M. 1970: Toxic Lepidoptera. Toxicon 8: 293-299 Go to original source...
  29. SACHDEV-GUPTA K., FEENY P.P. & CARTER M. 1993: Oviposition stimulants for the pipevine swallowtail butterfly, Battus philenor (Papilionidae), from an Aristolochia host plant: synergism between inositols, aristolochic acids and monogalactosyl diglyceride. Chemoecology 4: 19-28 Go to original source...
  30. SCHOONHOVEN L.M., VAN LOON J.J.A. & DICKE M. 2005: InsectPlant Biology. Oxford University Press, Oxford, 421 pp
  31. SILLEN-TULLBERG B. 1988: Evolution of gregariousness in aposematic butterfly larvae: a phylogenetic analysis. Evolution 42: 293-305 Go to original source...
  32. SIME K.R. 2002: Chemical defence of Battus philenor larvae against attack by the parasitoid Trogus pennator. Ecol. Entomol. 27: 337-345 Go to original source...
  33. SIME K.R., FEENY P.P. & HARIBAL M.M. 2000: Sequestration of aristolochic acids by the pipevine swallowtail, Battus philenor (L.): evidence and ecological implications. Chemoecology 10: 169-178 Go to original source...
  34. SOKAL R.R. & ROHLF F.J. 1995: Biometry. 3rd ed. W.H. Freeman, New York, 887 pp
  35. STAMP N.E. 1986: Physical constraints of defense and response to invertebrate predators by pipevine caterpillars (Battus philenor: Papilionidae). J. Lepid. Soc. 40: 191-205
  36. TATAR M. 1991: Clutch size in the swallowtail butterfly, Battus philenor: The role of host quality and egg load within and among seasonal flights in California (USA). Behav. Ecol. Sociobiol. 28: 337-344 Go to original source...
  37. TSUBAKI Y. & MATSUMOTO K. 1998: Fluctuating asymmetry and male mating success in a sphragis-bearing butterfly Luehdorfia japonica (Lepidoptera: Papilionidae). J. Insect Behav. 11: 571-582 Go to original source...
  38. TULLBERG B.S., LEIMAR O. & GAMBERALE-STILLE G. 2000: Did aggregation favour the initial evolution of warning coloration? A novel world revisited. Anim. Behav. 59: 281-287 Go to original source...
  39. URZUA A. & PRIESTAP H. 1985: Aristolochic acids from Battus polydamas. Biochem. Syst. Ecol. 13: 169-170
  40. URZUA A., RODRIGUEZ R. & CASSELS B.K. 1987: Fate of ingested aristolochic acids in Battus archidamas. Biochem. Syst. Ecol. 15: 687-689 Go to original source...
  41. VISSER J.H. 1986: Host odor perception in phytophagous insects. Annu. Rev. Entomol. 31: 121-144 Go to original source...
  42. WEINTRAUB J.D. 1995: Host plant association patterns and phylogeny in the tribe Troidini. In Scriber J.M., Tsubaki Y. & Lederhouse R.C. (eds): Swallowtail Butterflies: Their Ecology and Evolutionary Biology. Scientific Publishers, Gainesville, FL, pp. 307-316