Eur. J. Entomol. 105 (5): 939-944, 2008 | DOI: 10.14411/eje.2008.120

Latitudinal variation in morphology in two sympatric damselfly species with contrasting range dynamics (Odonata: Coenagrionidae)

Christopher HASSALL, David J. THOMPSON, Ian F. HARVEY
Biosciences Building, Crown Street, University of Liverpool, L69 7ZB Liverpool, UK; e-mail: c.hassall@liv.ac.uk

Geographic range expansion is one of the best documented macroecological consequences of climate change. A concomitant change in morphology has been demonstrated in some species. The relationship between latitudinal variation in morphology (e.g. Bergmann's rule) and the morphological consequences of microevolutionary pressures at expanding range margins have received little attention in the literature. Here we compare morphology of males of two Palaearctic damselfly (Odonata: Zygoptera) species, Coenagrion puella (Linnaeus, 1758) and Pyrrhosoma nymphula (Sulzer, 1776). C. puella has recently expanded its range from the north of England into Scotland. P. nymphula does not exhibit a range margin in the United Kingdom and has established populations in northern Scotland. We demonstrate evidence for spatially correlated variation in body size across the sampling sites between the two species but a deviation in patterns of dispersal-related morphology. P. nymphula exhibited very weak relationships between dispersal-related morphology (wing loading and thorax : abdomen mass ratio) and latitude. However, the more southerly-distributed C. puella exhibited strong relationships between mass investment in dispersal-related morphology and latitude. These trends appear to indicate compensatory growth patterns in cooler environments like those demonstrated for other species. The limits of this compensation for conditions that are close to the limits of a species' tolerance may contribute to the determination of the range margin. Greater variation in morphology towards the range margin has been observed in previous studies in Odonata. As such, the location of the sampling sites relative to the range margin of each species (closer in C. puella than P. nymphula) is highlighted as a potential contributing factor to the variation observed.

Keywords: Dragonfly, Odonata, Coenagrionidae, morphology, range shift, United Kingdom, body size, temperature, voltinism

Received: August 4, 2008; Accepted: October 2, 2008; Published: December 30, 2008

Download citation

References

  1. ADAMS J., MASLIN M. & THOMAS E. 1999: Sudden climate transitions during the Quaternary. Progr. Physic. Geogr. 23: 1-36 Go to original source...
  2. ANGILLETTA JR. M.J. & DUNHAM A.E. 2003: The temperaturesize rule in ectotherms: simple evolutionary explanations may not be general. Am. Nat. 162: 332-342 Go to original source...
  3. ANHOLT B.R. 1990: Size-biased dispersal prior to breeding in a damselfly. Oecologia 83: 385-387 Go to original source...
  4. ASKEW R.R. 2004: The Dragonflies of Europe. 2nd ed. Harley, Colchester, 308 pp
  5. ATKINSON D. 1994: Temperature and organism size - a biological law for ectotherms? Adv. Ecol. Res. 25: 1-58 Go to original source...
  6. AZEVEDO R.B.R., JAMES A.C., MCCABE J. & PARTRIDGE L. 1998: Latitudinal variation of wing : thorax size ratio and wingaspect ratio in Drosophila melanogaster. Evolution 52: 1353-1362 Go to original source...
  7. BALMFORD A. 1996: Extinction filters and current resilience: the significance of past selection pressures for conservation biology. Trends Ecol. Evol. 11: 193-196 Go to original source...
  8. BANKS M.J. 1985: Population Dynamics and Lifetime Reproductive Success of Damselflies. PhD thesis, University of Liverpool, Liverpool
  9. BANKS M.J. & THOMPSON D.J. 1985: Emergence, longevity and breeding area fidelity in Coenagrion puella (L.) (Zygoptera: Coenagrionidae). Odonatologica 14: 279-286
  10. BERGMANN C. 1847: Uber die verhaltnisse der warmeokonomie der thiere zu ihrer grosse. [Concerning the relationship of heat conservation of animals to their size.] GGtting. Stud. 1: 595-708
  11. BERWAERTS K., VAN DYCK H. & AERTS P. 2002: Does flight morphology relate to flight performance? An experimental test with the butterfly Pararge aegeria. Funct. Ecol. 16: 484-491 Go to original source...
  12. BLUMENSHINE S.C., LODGE D.M. & HODGSON J.R. 2000: Gradient of fish predation alters body size distributions of lake benthos. Ecology 81: 374-386
  13. CONRAD K.F., WILLSON K.H., WHIFIELD K., HARVEY I.F., THOMAS C.J. & SHERRATT T.N. 2002: Characteristics of dispersing Ischnura elegans and Coenagrion puella (Odonata): Age, sex, HILL J.K., THOMAS C.D. & BLAKELEY D.S. 1999: Evolution of flight morphology in a butterfly that has recently expanded its geographic range. Oecologia 121: 165-170
  14. HILL J.K., HUGHES C.L., DYTHAM C. & SEARLE J.B. 2006: Genetic diversity in butterflies: interactive effects of habitat fragmentation and climate-driven range expansion. Biol. Letters 2: 152-154 Go to original source...
  15. JOHANSSON F. 2003: Latitudinal shifts in body size of Enallagma cyathigerum (Odonata). J. Biogeogr. 30: 29-34 Go to original source...
  16. JOHANSSON F. & ROWE L. 1999: Life history and behavioral responses to time constraints in a damselfly. Ecology 80: 1242-1252 Go to original source...
  17. JOHANSSON F. & SAMUELSSON L. 1994: Fish-induced variation in abdominal spine length of Leucorrhinia dubia (Odonata) larvae? Oecologia 100: 74-79 Go to original source...
  18. JONES P.D., OSBORN T.J. & BRIFFA K.R. 2001: The evolution of climate over the last millennium. Science 292: 662-667 Go to original source...
  19. LAWTON J.H., THOMPSON B.A. & THOMPSON D.J. 1980: The effects of prey density on survival and growth of damselfly larvae. Ecol. Entomol. 5: 39-51 Go to original source...
  20. MACAN T.T. 1964: The Odonata of a moorland fishpond. Int. Rev. Gesam. Hydrobiol. 49: 325-360 Go to original source...
  21. MACAN T.T. 1974: Twenty generations of Pyrrhosoma nymphula (Sulzer) and Enallagma cyathigerum (Charpentier) (Odonata: Zygoptera). Odonatologica 3: 107-119
  22. MAY M.L. 1981: Wingstroke frequency of dragonflies (Odonata: Anisoptera) in relation of temperature and body size. J. Compar. Physiol. (B) 144: 229-240 Go to original source...
  23. NORLING U. 1984: Life history patterns in the northern expansion of dragonflies. Adv. Odonatol. 2: 127-156
  24. O'GRADY E.W. & MAY M.L. 2003: A phylogenetic reassessment of the subfamilies of Coenagrionidae (Odonata: Zygoptera). J. Nat. Hist. 37: 2807-2834 Go to original source...
  25. OTT J. 2001: Expansion of Mediterranean Odonata in Germany and Europe - Consequences of climatic changes. In Walther G.R., Buga C. & Edwards P.J. (eds): "Fingerprints" of Climate Change: Adapted Behaviour and Shifting Species Ranges, Kluwer Academic/Plenum Publishers, New York, pp. 89-112
  26. PARMESAN C. & YOHE G. 2003: A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37-42 Go to original source...
  27. PARMESAN C., RYRHOLM N., STEFANESCU C., HILL J.K., HUNTLEY B., THOMAS C.D., DESCIMON H., KALLA L., KULLBERG J., TAMMARU T., TENNENT W.J., THOMAS J.A. & WARREN M. 1999: size, morph and ectoparasitism. Ecography 25: 439-445
  28. COOPE G.R. 1978: Constancy of insect species versus inconstancy of Quaternary environments. In Mound L.A. & Waloff N. (eds): Diversity of Insect Faunas. Blackwell Scientific Publications, Oxford, pp. 176-187
  29. CORBET P.S., SUHLING F. & SONDGERATH D. 2006: Voltinism of Odonata: a review. Int. J. Odonatol. 9: 1-44 Go to original source...
  30. DE BLOCK M. & STOKS R. 2003: Adaptive sex-specific life history plasticity to temperature and photoperiod in a damselfly. J. Evol. Biol. 16: 986-995 Go to original source...
  31. GILCHRIST G.W. & HUEY R.B. 2004: Plastic and genetic variation in wing loading as a function of temperature within and among parallel clines in Drosophila subobscura. Intergr. Compar. Biol. 44: 461-470 Go to original source...
  32. HASSALL C., THOMPSON D.J. & HARVEY I.F. 2008: Wings of Coenagrion puella vary in shape at the northern range margin (Odonata: Coenagrionidae). Int. J. Odonatol. 11: 35-41 Go to original source...
  33. HICKLING R., ROY D.B., HILL J.K., FOX R. & THOMAS C.D. 2006: The distributions of a wide range of taxonomic groups are expanding polewards. Glob. Change Biol. 12: 1-6. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399: 579-583
  34. PHILLIPS B.L., BROWN G.P., WEBB J.K. & SHINE R. 2006: Invasion and the evolution of speed in toads. Nature 439: 803 Go to original source...
  35. RASBAND W.S. 1997- 2007: ImageJ. http://rsb.info.nih.gov/ij/, National Institutes for Health, Bethesda, Maryland, USA
  36. TAYLOR P.D. & MERRIAM G. 1995: Wing morphology of a forest damselfly is related to landscape structure. Oikos 73: 43-48 Go to original source...
  37. THOMAS C.D., BODSWORTH E.J., WILSON R.J., SIMMONS A.D., DAVIES Z.G., MUSCHE M. & CONRADT L. 2001: Ecological and evolutionary processes at expanding range margins. Nature 411: 577-581 Go to original source...
  38. WALTERS R.J. & HASSALL M. 2006: The temperature size rule in ectotherms: may a general explanation exist after all? Am. Nat. 167: 510-523 Go to original source...
  39. WALTHER G.R., BERGER S. & SYKES M.T. 2005: An ecological "footprint" of climate change. Proc. R. Soc. Lond. (B) 272: 1427-1432 Go to original source...